OpenimagelO
Release 2.5.10

Larry Gritz

Apr 01, 2024






10

11

12

13

14

15

16

17

18

19

Introduction

Image I/0 API Helper Classes
ImageOutput: Writing Images
Imagelnput: Reading Images

Writing ImagelO Plugins

Bundled ImagelO Plugins

Cached Images

Texture Access: TextureSystem

ImageBuf: Image Buffers

ImageBufAlgo: Image Processing

Python Bindings

oiiotool: the OIIO Swiss Army Knife
Getting Image information With iinfo
Converting Image Formats With iconvert
Searching Image Metadata With igrep
Comparing Images With idiff

Making Tiled MIP-Map Texture Files With maketx or oiiotool
Metadata conventions

Glossary

Index

CONTENTS

11
49
87

117

147

181

197

221

239

321

377

449

453

459

461

465

473

489

491







OpenimagelO, Release 2.5.10

The code that implements OpenlmagelO is licensed under the Apache 2.0 license for all new code contributed after
July 1, 2023, and any code from prior to that date which has been relicensed under Apache-2.0 by their owners. Code
dating from prior to July 1, 2023 that has not been relicensed by their owners is licensed under the BSD 3-clause (also
sometimes known as “new BSD” or “modified BSD”) license.

Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.

“License” shall mean the terms and conditions for use, reproduction, and distribution as
defined by Sections 1 through 9 of this document.

“Licensor” shall mean the copyright owner or entity authorized by the copyright owner
that is granting the License.

“Legal Entity” shall mean the union of the acting entity and all other entities that control,
are controlled by, or are under common control with that entity. For the purposes of this
definition, “control” means (i) the power, direct or indirect, to cause the direction or man-
agement of such entity, whether by contract or otherwise, or (ii) ownership of fifty percent
(50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity.

“You” (or “Your”) shall mean an individual or Legal Entity exercising permissions granted
by this License.

“Source” form shall mean the preferred form for making modifications, including but not
limited to software source code, documentation source, and configuration files.

“Object” form shall mean any form resulting from mechanical transformation or translation
of a Source form, including but not limited to compiled object code, generated documen-
tation, and conversions to other media types.

“Work™ shall mean the work of authorship, whether in Source or Object form, made avail-
able under the License, as indicated by a copyright notice that is included in or attached to
the work (an example is provided in the Appendix below).

“Derivative Works” shall mean any work, whether in Source or Object form, that is based
on (or derived from) the Work and for which the editorial revisions, annotations, elabora-
tions, or other modifications represent, as a whole, an original work of authorship. For the
purposes of this License, Derivative Works shall not include works that remain separable
from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works
thereof.

“Contribution” shall mean any work of authorship, including the original version of the
Work and any modifications or additions to that Work or Derivative Works thereof, that is
intentionally submitted to Licensor for inclusion in the Work by the copyright owner or by
an individual or Legal Entity authorized to submit on behalf of the copyright owner. For the
purposes of this definition, “submitted” means any form of electronic, verbal, or written
communication sent to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems, and issue tracking

CONTENTS 1


http://www.apache.org/licenses/

OpenimagelO, Release 2.5.10

systems that are managed by, or on behalf of, the Licensor for the purpose of discussing
and improving the Work, but excluding communication that is conspicuously marked or
otherwise designated in writing by the copyright owner as “Not a Contribution.”

“Contributor” shall mean Licensor and any individual or Legal Entity on behalf of whom
a Contribution has been received by Licensor and subsequently incorporated within the
Work.

2. Grant of Copyright License. Subject to the terms and conditions of this License, each Con-
tributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-
free, irrevocable copyright license to reproduce, prepare Derivative Works of, publicly
display, publicly perform, sublicense, and distribute the Work and such Derivative Works
in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of this License, each Contrib-
utor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free,
irrevocable (except as stated in this section) patent license to make, have made, use, offer
to sell, sell, import, and otherwise transfer the Work, where such license applies only to
those patent claims licensable by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s) with the Work to which
such Contribution(s) was submitted. If You institute patent litigation against any entity (in-
cluding a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution
incorporated within the Work constitutes direct or contributory patent infringement, then
any patent licenses granted to You under this License for that Work shall terminate as of
the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works
thereof in any medium, with or without modifications, and in Source or Object form, pro-
vided that You meet the following conditions:

(a) You must give any other recipients of the Work or Derivative Works a copy of this
License; and

(b) You must cause any modified files to carry prominent notices stating that You changed
the files; and

(c) You must retain, in the Source form of any Derivative Works that You distribute, all
copyright, patent, trademark, and attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of the Derivative Works; and

(d) If the Work includes a “NOTICE” text file as part of its distribution, then any Deriva-
tive Works that You distribute must include a readable copy of the attribution notices
contained within such NOTICE file, excluding those notices that do not pertain to any
part of the Derivative Works, in at least one of the following places: within a NOTICE
text file distributed as part of the Derivative Works; within the Source form or docu-
mentation, if provided along with the Derivative Works; or, within a display generated
by the Derivative Works, if and wherever such third-party notices normally appear.
The contents of the NOTICE file are for informational purposes only and do not mod-
ify the License. You may add Your own attribution notices within Derivative Works
that You distribute, alongside or as an addendum to the NOTICE text from the Work,
provided that such additional attribution notices cannot be construed as modifying the
License.

You may add Your own copyright statement to Your modifications and may provide ad-
ditional or different license terms and conditions for use, reproduction, or distribution of
Your modifications, or for any such Derivative Works as a whole, provided Your use, re-
production, and distribution of the Work otherwise complies with the conditions stated in
this License.

2 CONTENTS



OpenimagelO, Release 2.5.10

5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution in-
tentionally submitted for inclusion in the Work by You to the Licensor shall be under the
terms and conditions of this License, without any additional terms or conditions. Notwith-
standing the above, nothing herein shall supersede or modify the terms of any separate
license agreement you may have executed with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade names, trademarks,
service marks, or product names of the Licensor, except as required for reasonable and
customary use in describing the origin of the Work and reproducing the content of the
NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Li-
censor provides the Work (and each Contributor provides its Contributions) on an “AS
IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either ex-
press or implied, including, without limitation, any warranties or conditions of TITLE,
NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR
PURPOSE. You are solely responsible for determining the appropriateness of using or re-
distributing the Work and assume any risks associated with Your exercise of permissions
under this License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort (including
negligence), contract, or otherwise, unless required by applicable law (such as deliberate
and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You
for damages, including any direct, indirect, special, incidental, or consequential damages
of any character arising as a result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill, work stoppage, computer
failure or malfunction, or any and all other commercial damages or losses), even if such
Contributor has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative
Works thereof, You may choose to offer, and charge a fee for, acceptance of support, war-
ranty, indemnity, or other liability obligations and/or rights consistent with this License.
However, in accepting such obligations, You may act only on Your own behalf and on
Your sole responsibility, not on behalf of any other Contributor, and only if You agree to
indemnify, defend, and hold each Contributor harmless for any liability incurred by, or
claims asserted against, such Contributor by reason of your accepting any such warranty
or additional liability.

END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following boilerplate notice, with
the fields enclosed by brackets “[]” replaced with your own identifying information.
(Don’t include the brackets!) The text should be enclosed in the appropriate comment
syntax for the file format. We also recommend that a file or class name and description
of purpose be included on the same “printed page” as the copyright notice for easier
identification within third-party archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file
except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the Li-
cense is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF

CONTENTS 3


http://www.apache.org/licenses/LICENSE-2.0

OpenimagelO, Release 2.5.10

ANY KIND, either express or implied. See the License for the specific language governing
permissions and limitations under the License.

This manual and other text documentation about OpenlmagelO are licensed under the Creative Commons Attribution
4.0 International License.

O

http://creativecommons.org/licenses/by/4.0/

OpenlmagelO incorporates code from several other software packages with compatible licenses. Copies of
their licenses are reproduced here: https://github.com/AcademySoftwareFoundation/OpenlmagelO/blob/master/
THIRD-PARTY.md

4 CONTENTS


http://creativecommons.org/licenses/by/4.0/
https://github.com/AcademySoftwareFoundation/OpenImageIO/blob/master/THIRD-PARTY.md
https://github.com/AcademySoftwareFoundation/OpenImageIO/blob/master/THIRD-PARTY.md

CHAPTER
ONE

INTRODUCTION

Welcome to OpenImagelO!

I kinda like “Oy-e-oh” with a bit of a groaning Yiddish accent, as in
“OlO, did you really write yet another file I/O library?”

Dan Wexler

1.1 Overview

OpenlmagelO provides simple but powerful Imagelnput and ImageOutput APIs that abstract the reading and writing of
2D image file formats. They don’t support every possible way of encoding images in memory, but for a reasonable and
common set of desired functionality, they provide an exceptionally easy way for an application using the APIs support
a wide — and extensible — selection of image formats without knowing the details of any of these formats.

Concrete instances of these APIs, each of which implements the ability to read and/or write a different image file
format, are stored as plugins (i.e., dynamic libraries, DLL’s, or DSO’s) that are loaded at runtime. The OpenlmagelO
distribution contains such plugins for several popular formats. Any user may create conforming plugins that implement
reading and writing capabilities for other image formats, and any application that uses OpenlmagelO would be able to
use those plugins.

The library also implements the helper class ImageBuf, which is a handy way to store and manipulate images in memory.
ImageBuf itself uses Imagelnput and ImageOutput for its file I/O, and therefore is also agnostic as to image file formats.
A variety of functions in the ImageBufAlgo namespace are available to perform common image processing operations
on ImageBuf’s.

The ImageCache class transparently manages a cache so that it can access truly vast amounts of image data (thousands
of image files totaling hundreds of GB to several TBs) very efficiently using only a tiny amount (tens of megabytes to a
few GB at most) of runtime memory. Additionally, a TextureSystem class provides filtered MIP-map texture lookups,
atop the nice caching behavior of ImageCache.

Finally, the OpenlmagelO distribution contains several utility programs that operate on images, each of which is built
atop this functionality, and therefore may read or write any image file type for which an appropriate plugin is found
at runtime. Paramount among these utilities oiiotool, a command-line image processing engine, and iv, an image




OpenimagelO, Release 2.5.10

viewing application. Additionally, there are programs for converting images among different formats, comparing image
data between two images, and examining image metadata.

All of this is released as “open source” software using the very permissive “BSD 3-clause” license. So you should
feel free to use any or all of OpenlmagelO in your own software, whether it is private or public, open source or pro-
prietary, free or commercial. You may also modify it on your own. You are encouraged to contribute to the continued
development of OpenlmagelO and to share any improvements that you make on your own, though you are by no means
required to do so.

1.2 Simplifying Assumptions

OpenlmagelO is not the only image library in the world. Certainly there are many fine libraries that implement a single
image format (including the excellent 1ibtiff, 1ibjpeg, and OpenEXR that OpenlmagelO itself relies on). Many
libraries attempt to present a uniform API for reading and writing multiple image file formats. Most of these support a
fixed set of image formats, though a few of these also attempt to provide an extensible set by using the plugin approach.

But in our experience, these libraries are all flawed in one or more ways: (1) They either support only a few formats,
or many formats but with the majority of them somehow incomplete or incorrect. (2) Their APIs are not sufficiently
expressive as to handle all the image features we need (such as tiled images, which is critical for our texture library).
(3) Their APIs are too complete, trying to handle every possible permutation of image format features, and as a result
are horribly complicated.

The third sin is the most severe, and is almost always the main problem at the end of the day. Even among the many
open source image libraries that rely on extensible plugins, we have not found one that is both sufficiently flexible and
has APIs anywhere near as simple to understand and use as those of OpenImagelO.

Good design is usually a matter of deciding what not to do, and OpenlmagelO is no exception. We achieve power and
elegance only by making simplifying assumptions. Among them:

* OpenlmagelO only deals with ordinary 2D images, and to a limited extent 3D volumes, and image files that
contain multiple (but finite) independent images within them. OpenImagelO’s support of “movie” files is limited
to viewing them as a sequence of separate frames within the file, but not as movies per se (for example, no support
for dealing with audio or synchronization).

* Pixel data are presented as 8- 16- or 32-bit int (signed or unsigned), 16- 32- or 64-bit float. NOTHING ELSE.
No < 8 bit images, or pixel value boundaries that aren’t byte boundaries. Files with < 8 will appear to the client
application as 8-bit unsigned grayscale images.

* Only fully elaborated, non-compressed data are accepted and returned by the API. Compression or special en-
codings are handled entirely within an OpenlmagelO plugin.

* Color space is by default converted to grayscale or RGB. Non-spectral color models, such as XYZ, CMYK, or
YUYV, are converted to RGB upon reading. (There is a way to override this and ask for raw pixel values.)

¢ All color channels can be treated (by apps or readers/writers) as having the same data format (though there is a
way to deal with per-channel formats for apps and readers/writers that truly need it).

* All image channels in a subimage are sampled at the same resolution. For file formats that allow some channels
to be subsampled, they will be automatically up-sampled to the highest resolution channel in the subimage.

¢ Color information is always in the order R, G, B, and the alpha channel, if any, always follows RGB, and Z
channel (if any) always follows alpha. So if a file actually stores ABGR, the plugin is expected to rearrange it as
RGBA.

It’s important to remember that these restrictions apply to data passed through the APIs, not to the files themselves.
It’s perfectly fine to have an OpenlmagelO plugin that supports YUV data, or 4 bits per channel, or any other exotic
feature. You could even write a movie-reading ImageInput (despite OpenlmagelO’s claims of not supporting movies)

6 Chapter 1. Introduction



OpenimagelO, Release 2.5.10

and make it look to the client like it’s just a series of images within the file. It’s just that all the nonconforming details
are handled entirely within the OpenlmagelO plugin and are not exposed through the main OpenlmagelO APIs.

1.3 Historical Origins

OpenlmagelO is the evolution of concepts and tools I’ve been working on for two decades.

In the 1980’s, every program I wrote that output images would have a simple, custom format and viewer. 1 soon
graduated to using a standard image file format (TIFF) with my own library implementation. Then I switched to Sam
LefHler’s stable and complete 1ibtiff.

In the mid-to-late-1990’s, I worked at Pixar as one of the main implementors of PhotoRealistic RenderMan, which had
display drivers that consisted of an API for opening files and outputting pixels, and a set of DSO/DLL plugins that each
implement image output for each of a dozen or so different file format. The plugins all responded to the same API,
so the renderer itself did not need to know how to the details of the image file formats, and users could (in theory, but
rarely in practice) extend the set of output image formats the renderer could use by writing their own plugins.

This was the seed of a good idea, but PRMan’s display driver plugin API was abstruse and hard to use. So when I started
Exluna in 2000, Matt Pharr, Craig Kolb, and I designed a new API for image output for our own renderer, Entropy.
This API, called “ExDisplay,” was C++, and much simpler, clearer, and easier to use than PRMan’s display drivers.

NVIDIA’s Gelato (circa 2002), whose early work was done by myself, Dan Wexler, Jonathan Rice, and Eric Enderton,
had an API called “ImagelO.” ImagelO was much more powerful and descriptive than ExDisplay, and had an API for
reading as well as writing images. Gelato was not only “format agnostic” for its image output, but also for its image
input (textures, image viewer, and other image utilities). We released the API specification and headers (though not
the library implementation) using the BSD open source license, firmly repudiating any notion that the API should be
specific to NVIDIA or Gelato.

For Gelato 3.0 (circa 2007), we refined ImagelO again (by this time, Philip Nemec was also a major influence, in
addition to Dan, Eric, and myself 1. This revision was not a major overhaul but more of a fine tuning. Our ideas were
clearly approaching stability. But, alas, the Gelato project was canceled before Gelato 3.0 was released, and despite
our prodding, NVIDIA executives would not open source the full ImagelO code and related tools.

After I left NVIDIA, I was determined to recreate this work once again — and ONLY once more — and release it as open
source from the start. Thus, OpenlmagelO was born. I started with the existing Gelato ImagelO specification and head-
ers (which were BSD licensed all along), and made further refinements since I had to rewrite the entire implementation
from scratch anyway. I think the additional changes are all improvements.

Over the years and with the help of dozens of open source contributors, OpenlmagelO has expanded beyond the orig-
inal simple image format input/output to encompass a wide range of image-related functionality. It has grown into a
foundational technology in many products and tools, particularly for the production of animation and visual effects for
motion pictures (but also many other uses and fields). This is the software you have in your hands today.

! Gelato as a whole had many other contributors; those I've named here are the ones I recall contributing to the design or implementation of the
ImagelO APIs.

1.3. Historical Origins 7



OpenimagelO, Release 2.5.10

1.4

Acknowledgments

OpenlmagelO incorporates, depends upon, or dynamically links against several other open source packages, detailed
below. These other packages are all distributed under licenses that allow them to be used by OpenlmagelO. Where not
specifically noted, they are all using the same BSD license that OpenlmagelO uses. Any omissions or inaccuracies in
this list are inadvertent and will be fixed if pointed out. The full original licenses can be found in the relevant parts of
the source code.

OpenlmagelO incorporates, distributes, or contains derived works of:

The SHA-1 implementation we use is public domain by Dominik Reichl http://www.dominik-reichl.de/

PugiXML © 2006-2009 by Arseny Kapoulkine (based on work © 2003 Kristen Wegner), MIT license. http:
/Ipugixml.org/

DPX reader/writer © 2009 Patrick A. Palmer, BSD 3-clause license. https://github.com/patrickpalmer/dpx}
lookup3 code by Bob Jenkins, Public Domain. http://burtleburtle.net/bob/c/lookup3.c

xxhash © 2014 Yann Collet, BSD 2-clause license. https://github.com/Cyan4973/xxHash

farmhash © 2014 Google, Inc., MIT license. https://github.com/google/farmhash

gif.h by Charlie Tangora, public domain. https://github.com/ginsweater/gif-h

KissFFT © 2003-2010 Mark Borgerding, 3-clause BSD license. https://github.com/mborgerding/kissftt
CTPL thread pool © 2014 Vitaliy Vitsentiy, Apache License. https://github.com/vit-vit/CTPL

Droid fonts from the Android SDK are distributed under the Apache license. http://www.droidfonts.com

function_view.h contains code derived from LLVM, © 2003-2018 University of Illinois at Urbana-Champaign.
UIUC license (compatible with BSD) http://Ilvm.org

FindOpenVDB.cmake © 2015 Blender Foundation, BSD license.

FindTBB.cmake © 2015 Justus Calvin, MIT license.

fmt library © Victor Zverovich. MIT license. https://github.com/fmtlib/fmt

UTF-8 decoder © 2008-2009 Bjoern Hoehrmann, MIT license. http://bjoern.hoehrmann.de/utf-8/decoder/dfa
Base-64 encoder © René Nyftenegger, Zlib license. http://www.adp-gmbh.ch/cpp/common/base64.html

stb_sprintf © 2017 Sean Barrett, public domain (or MIT license where that may not apply). https://github.com/
nothings/stb

bedec.h bySergii “iOrange” Kudlai, MIT or Unlicense. https://github.com/iOrange/bcdec

OpenlmagelO Has the following build-time dependencies (using system installs, referencing as git submodules, or
downloading as part of the build), including link-time dependencies against dynamic libraries:

libtiff © 1988-1997 Sam Leffler and 1991-1997 Silicon Graphics, Inc. http://www.remotesensing.org/libtiff
1JG libjpeg © 1991-1998, Thomas G. Lane. http://www.ijg.org

OpenEXR, Ilmbase, and Half © 2006, Industrial Light & Magic. http://www.openexr.com

zlib © 1995-2005 Jean-loup Gailly and Mark Adler. http://www.zlib.net

libpng © 1998-2008 Glenn Randers-Pehrson, et al. http://www.libpng.org

Boost © various authors. http://www.boost.org

GLEW © 2002-2007 Milan Ikits, et al. http://glew.sourceforge.net

Ptex © 2009 Disney Enterprises, Inc. http://ptex.us

Chapter 1. Introduction


http://www.dominik-reichl.de/
http://pugixml.org/
http://pugixml.org/
https://github.com/patrickpalmer/dpx
http://burtleburtle.net/bob/c/lookup3.c
https://github.com/Cyan4973/xxHash
https://github.com/google/farmhash
https://github.com/ginsweater/gif-h
https://github.com/mborgerding/kissfft
https://github.com/vit-vit/CTPL
http://www.droidfonts.com
http://llvm.org
https://github.com/fmtlib/fmt
http://bjoern.hoehrmann.de/utf-8/decoder/dfa
http://www.adp-gmbh.ch/cpp/common/base64.html
https://github.com/nothings/stb
https://github.com/nothings/stb
https://github.com/iOrange/bcdec
http://www.remotesensing.org/libtiff
http://www.ijg.org
http://www.openexr.com
http://www.zlib.net
http://www.libpng.org
http://www.boost.org
http://glew.sourceforge.net
http://ptex.us

OpenimagelO, Release 2.5.10

* GIFLIB © 1997 Eric S. Raymond (MIT Licensed). http://giflib.sourceforge.net/
e LibRaw © 2008-2013 LibRaw LLC (LGPL, CDDL, and LibRaw licenses). http://www.libraw.org/
* FFmpeg © various authors and distributed under LGPL. https://www.ffmpeg.org

* FreeType © 1996-2002, 2006 by David Turner, Robert Wilhelm, and Werner Lemberg. Distributed under the
FreeType license (BSD compatible).

* JPEG-Turbo © 2009-2015 D. R. Commander. Distributed under the BSD license.
* pybind11 © 2016 Wenzel Jakob. Distributed under the BSD license. https://github.com/pybind/pybind11

* OpenJPEG © Universite catholique de Louvain (UCL), et al. Distributed under the BSD 2-clause license. https:
/I github.com/uclouvain/openjpeg

* OpenVDB © 2012-2018 DreamWorks Animation LLC, Mozilla Public License 2.0. https://www.openvdb.org/
 Thread Building Blocks © Intel. Apache 2.0 license. https://www.threadingbuildingblocks.org/
¢ libheif © 2017-2018 Struktur AG (LGPL). https://github.com/strukturag/libheif

1.4. Acknowledgments 9


http://giflib.sourceforge.net/
http://www.libraw.org/
https://www.ffmpeg.org
https://github.com/pybind/pybind11
https://github.com/uclouvain/openjpeg
https://github.com/uclouvain/openjpeg
https://www.openvdb.org/
https://www.threadingbuildingblocks.org/
https://github.com/strukturag/libheif

OpenimagelO, Release 2.5.10

10 Chapter 1. Introduction



CHAPTER
TWO

IMAGE I/0 API HELPER CLASSES

2.1 Data Type Descriptions: TypeDesc

There are two kinds of data that are important to OpenlmagelO:
* Internal data is in the memory of the computer, used by an application program.

* Native file data is what is stored in an image file itself (i.e., on the “other side” of the abstraction layer that
OpenlmagelO provides).

Both internal and file data is stored in a particular data format that describes the numerical encoding of the values.
OpenlmagelO understands several types of data encodings, and there is a special class, TypeDesc, that allows their
enumeration and is described in the header file OpenImageIO/typedesc.h. A TypeDesc describes a base data format
type, aggregation into simple vector and matrix types, and an array length (if it’s an array).

The remainder of this section describes the C++ API for TypeDesc. See Section Python Bindings for the corresponding
Python bindings.

struct TypeDesc
A TypeDesc describes simple data types.

It frequently comes up (in my experience, with renderers and image handling programs) that you want a way to
describe data that is passed through APIs through blind pointers. These are some simple classes that provide a
simple type descriptor system. This is not meant to be comprehensive &#8212; for example, there is no provision
for structs, unions, pointers, const, or ‘nested’ type definitions. Just simple integer and floating point, common
aggregates such as 3-points, and reasonably-lengthed arrays thereof.

Public Types

enum BASETYPE

BASETYPE is a simple enum describing the base data types that correspond (mostly) to the C/C++ built-in
types.

Values:

enumerator UNKNOWN

unknown type

enumerator NONE

void/no type

11



OpenimagelO, Release 2.5.10

enumerator UINT8

8-bit unsigned int values ranging from 0..255, (C/C++ unsigned char).

enumerator UCHAR

enumerator INT8

8-bit int values ranging from -128..127, (C/C++ char).

enumerator CHAR

enumerator UINT16

16-bit int values ranging from 0..65535, (C/C++ unsigned short).

enumerator USHORT

enumerator INT16
16-bit int values ranging from -32768..32767, (C/C++ short).

enumerator SHORT

enumerator UINT32

32-bit unsigned int values (C/C++ unsigned int).

enumerator UINT

enumerator INT32

signed 32-bit int values (C/C++ int).

enumerator INT

enumerator UINT64

64-bit unsigned int values (C/C++ unsigned long long on most architectures).

enumerator ULONGLONG

enumerator INT64

signed 64-bit int values (C/C++ long long on most architectures).

enumerator LONGLONG

enumerator HALF
16-bit IEEE floating point values (OpenEXR half).

12 Chapter 2. Image 1/O API Helper Classes



OpenimagelO, Release 2.5.10

enumerator FLOAT
32-bit IEEE floating point values, (C/C++ float).

enumerator DOUBLE
64-bit IEEE floating point values, (C/C++ double).

enumerator STRING

Character string.

enumerator PTR

A pointer value.

enumerator USTRINGHASH
The hash of a ustring.

enumerator LASTBASE

enum AGGREGATE

AGGREGATE describes whether our TypeDesc is a simple scalar of one of the BASETYPE’s, or one of
several simple aggregates.

Note that aggregates and arrays are different. A TypeDesc(FLOAT,3) is an array of three floats, a
TypeDesc (FLOAT, VEC3) is a single 3-component vector comprised of floats, and TypeDesc (FLOAT, 3,
VEC3) is an array of 3 vectors, each of which is comprised of 3 floats.

Values:

enumerator SCALAR

A single scalar value (such as a raw int or float in C). This is the default.

enumerator VEC2

2 values representing a 2D vector.

enumerator VEC3

3 values representing a 3D vector.

enumerator VEC4

4 values representing a 4D vector.

enumerator MATRIX33

9 values representing a 3x3 matrix.

enumerator MATRIX44

16 values representing a 4x4 matrix.

2.1. Data Type Descriptions: TypeDesc 13



OpenimagelO, Release 2.5.10

enum VECSEMANTICS

VECSEMANTICS gives hints about what the data represent (for example, if a spatial vector quantity should
transform as a point, direction vector, or surface normal).

Values:

enumerator NOXFORM

No semantic hints.

enumerator NOSEMANTICS

No semantic hints.

enumerator COLOR

Color.

enumerator POINT

Point: a spatial location.

enumerator VECTOR

Vector: a spatial direction.

enumerator NORMAL

Normal: a surface normal.

enumerator TIMECODE
indicates an int [2] representing the standard 4-byte encoding of an SMPTE timecode.

enumerator KEYCODE
indicates an int [7] representing the standard 28-byte encoding of an SMPTE keycode.

enumerator RATIONAL
A VEC2 representing a rational number val[0] / val[1]

enumerator BOX
A VEC2[2] or VEC3][2] that represents a 2D or 3D bounds (min/max)

Public Functions

inline constexpr TypeDesc (BASETYPE btype = UNKNOWN, AGGREGATE agg = SCALAR,
VECSEMANTICS semantics = NOSEMANTICS, int arraylen = 0) noexcept

Construct from a BASETYPE and optional aggregateness, semantics, and arrayness.

inline constexpr TypeDesc (BASETYPE btype, int arraylen) noexcept
Construct an array of a non-aggregate BASETYPE.

inline constexpr TypeDesc(BASETYPE btype, AGGREGATE agg, int arraylen) noexcept

Construct an array from BASETYPE, AGGREGATE, and array length, with unspecified (or moot) semantic
hints.

14 Chapter 2. Image 1/O API Helper Classes



OpenimagelO, Release 2.5.10

TypeDesc (string_view typestring)
Construct from a string (e.g., “float[3]”). If no valid type could be assembled, set base to UNKNOWN.

Examples:

TypeDesc("int") == TypeDesc(TypeDesc: :INT) // C++ int32_t
TypeDesc("float") == TypeDesc(TypeDesc: :FLOAT) // C++ float
TypeDesc("uint16") == TypeDesc(TypeDesc: :UINT16) // C++ uintl6_t

TypeDesc("float[4]") == TypeDesc(TypeDesc: :FLOAT, 4) // array
TypeDesc('"'point") == TypeDesc(TypeDesc: :FLOAT,
TypeDesc: :VEC3, TypeDesc::POINT)

constexpr TypeDesc (const TypeDesc &t) noexcept = default

Copy constructor.

const char *c_str () const

ELINT3

Return the name, for printing and whatnot. For example, “float”, “int[5]”, “normal”

inline constexpr size_t numelements () const noexcept
Return the number of elements: 1 if not an array, or the array length. Invalid to call this for arrays of
undetermined size.

inline constexpr size_t basevalues() const noexcept
Return the number of basetype values: the aggregate count multiplied by the array length (or 1 if not an
array). Invalid to call this for arrays of undetermined size.

inline constexpr bool is_array() const noexcept
Does this TypeDesc describe an array?

inline constexpr bool is_unsized_array() const noexcept

Does this TypeDesc describe an array, but whose length is not specified?

inline constexpr bool is_sized_array() const noexcept

Does this TypeDesc describe an array, whose length is specified?

inline size_t size() const noexcept
Return the size, in bytes, of this type.

inline constexpr 7TypeDesc elementtype () const noexcept

Return the type of one element, i.e., strip out the array-ness.

inline size_t elementsize () const noexcept

Return the size, in bytes, of one element of this type (that is, ignoring whether it’s an array).

inline constexpr 7ypeDesc scalartype() const
Return just the underlying C scalar type, i.e., strip out the array-ness and the aggregateness.

size_t basesize() const noexcept
Return the base type size, i.e., stripped of both array-ness and aggregateness.

bool is_floating_point () const noexcept

True if it’s a floating-point type (versus a fundamentally integral type or something else like a string).

bool is_signed () const noexcept
True if it’s a signed type that allows for negative values.

inline constexpr bool is_unknown() const noexcept
Shortcut: is it UNKNOWN?

2.1.

Data Type Descriptions: TypeDesc 15



OpenimagelO, Release 2.5.10

inline constexpr operator bool () const noexcept
if (typedesc) is the same as asking whether it’'s not UNKNOWN.

size_t fromstring(string_view typestring)

Set *this to the type described in the string. Return the length of the part of the string that describes the
type. If no valid type could be assembled, return 0 and do not modify *this.

inline constexpr bool operator==_const TypeDesc &t) const noexcept
Compare two TypeDesc values for equality.

inline constexpr bool operator !=(const 7ypeDesc &t) const noexcept
Compare two TypeDesc values for inequality.

inline constexpr bool equivalent (const TypeDesc &b) const noexcept
Member version of equivalent.

inline constexpr bool is_vec2 (BASETYPE b = FLOAT) const noexcept
Is this a 2-vector aggregate (of the given type, float by default)?

inline constexpr bool is_vec3 (BASETYPE b = FLOAT) const noexcept
Is this a 3-vector aggregate (of the given type, float by default)?

inline constexpr bool is_vec4 (BASETYPE b = FLOAT) const noexcept
Is this a 4-vector aggregate (of the given type, float by default)?

inline constexpr bool is_box2 (BASETYPE b = FLOAT) const noexcept
Is this an array of aggregates that represents a 2D bounding box?

inline constexpr bool is_box3(BASETYPE b = FLOAT) const noexcept

Is this an array of aggregates that represents a 3D bounding box?

inline void unarray (void) noexcept

Demote the type to a non-array

bool operator<(const TypeDesc &x) const noexcept
Test for lexicographic ‘less’, comes in handy for lots of STL containers and algorithms.

Public Members

unsigned char basetype
C data type at the heart of our type.

unsigned char aggregate
What kind of AGGREGATE is it?

unsigned char vecsemantics

Hint: What does the aggregate represent?

unsigned char reserved

Reserved for future expansion.

int arraylen

Array length, O = not array, -1 = unsized.

16

Chapter 2. Image 1/O API Helper Classes



OpenimagelO, Release 2.5.10

Public Static Functions

static BASETYPE basetype_merge (TypeDesc a, TypeDesc b)

Given base data types of a and b, return a basetype that is a best guess for one that can handle both without
any loss of range or precision.

Friends

inline friend constexpr friend bool operator== (const TypeDesc &t,
BASETYPE b) noexcept

Compare a TypeDesc to a basetype (it’s the same if it has the same base type and is not an aggregate or an
array).

inline friend constexpr friend bool operator!= (const TypeDesc &t,
BASETYPE b) noexcept

Compare a TypeDesc to a basetype (it’s the same if it has the same base type and is not an aggregate or an
array).

inline friend constexpr friend bool equivalent (const TypeDesc &a,
const TypeDesc &b) noexcept

TypeDesc’s are equivalent if they are equal, or if their only inequality is differing vector semantics.

A number of static constexpr TypeDesc aliases for common types exist in the outer OpenlmagelO scope:

TypeUnknown TypeFloat TypeColor TypePoint TypeVector TypeNormal
TypeMatrix33 TypeMatrix44 TypeMatrix TypeHalf

TypeInt TypeUInt TypeInt32 TypeUInt32 TypeInt64 TypeUInt64
TypeIntl6 TypeUIntl6 TypeInt8 TypeUInt8

TypeFloat2 TypeVector2 TypeVector2i TypeFloat4

TypeString TypeTimeCode TypeKeyCode

TypeBox2 TypeBox2i TypeBox3 TypeBox3i

TypeRational TypePointer

The only types commonly used to store pixel values in image files are scalars of UINT8, UINT16, float, and half (the
last only used by OpenEXR, to the best of our knowledge).

Note that the TypeDesc (which is also used for applications other than images) can describe many types not used
by OpenlmagelO. Please ignore this extra complexity; only the above simple types are understood by OpenlmagelO
as pixel storage data types, though a few others, including string and MATRIX44 aggregates, are occasionally used
for metadata for certain image file formats (see Sections sec-imageoutput-metadata, sec-imageinput-metadata, and the
documentation of individual ImagelO plugins for details).

2.2 Non-owning string views: string_view

using string_view = basic_string_view<char>;

string_view is a synonym for a non-mutable string_view<char>.

template<class CharT, class Traits = std::char_traits<CharT>>

2.2. Non-owning string views: string_view 17




OpenimagelO, Release 2.5.10

class basic_string_view

A string_view is a non-owning, non-copying, non-allocating reference to a sequence of characters. It encap-
sulates both a character pointer and a length. This is analogous to C++17 std::string_view, but supports C++14.

Note: string_view is an alias for basic_string_view<char>.

A function that takes a string input (but does not need to alter the string in place) may use a string_view parameter
and accept input that is any of char* (C string), string literal (constant char array), a std::string (C++ string), or
OIIO ustring. For all of these cases, no extra allocations are performed, and no extra copies of the string contents
are performed (as they would be, for example, if the function took a const std::string& argument but was passed
a char* or string literal).

Furthermore, a function that returns a copy or a substring of one of its inputs (for example, a substr()-like function)
may return a string_view rather than a std::string, and thus generat