OpenimagelO

Release 2.3.9

Larry Gritz

Nov 05, 2021

10

11

12

13

14

15

16

17

18

19

Introduction

Image I/0 API Helper Classes
ImageQOutput: Writing Images

Imagelnput: Reading Images

Writing ImagelO Plugins

Bundled ImagelO Plugins

Cached Images

Texture Access: TextureSystem

ImageBuf: Image Buffers

ImageBufAlgo: Image Processing

Python Bindings

oiiotool: the OIIO Swiss Army Knife
Getting Image information With iinfo
Converting Image Formats With iconvert
Searching Image Metadata With igrep
Comparing Images With idiff

Making Tiled MIP-Map Texture Files With maketx or oiiotool
Metadata conventions

Glossary

Index

CONTENTS

41

69

93
119
145
159
183
201
257
305
365
369
375
377
381
389
403

405

OpenimagelO, Release 2.3.9

The code that implements OpenlmagelO is licensed under the BSD 3-clause (also sometimes known as “new BSD”
or “modified BSD”) license (https://github.com/OpenlmagelO/oiio/blob/master/LICENSE.md):

Copyright (c) 2008-present by Contributors to the OpenlmagelO project. All Rights Reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse
or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBU-
TORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUB-
STITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUP-
TION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

This manual and other text documentation about OpenImagelO are licensed under the Creative Commons Attribution
3.0 Unported License.

Ol

http://creativecommons.org/licenses/by/3.0/

OpenlmagelO incorporates code from several other software packages with compatible licenses. Copies of their
licenses are reproduced here: https://github.com/OpenlmagelO/oiio/blob/master/THIRD-PARTY.md

CONTENTS 1

https://github.com/OpenImageIO/oiio/blob/master/LICENSE.md
http://creativecommons.org/licenses/by/3.0/
https://github.com/OpenImageIO/oiio/blob/master/THIRD-PARTY.md

OpenimagelO, Release 2.3.9

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

Welcome to OpenlmagelO!

I kinda like “Oy-e-oh” with a bit of a groaning Yiddish accent, as in
“OlO, did you really write yet another file I/O library?”

Dan Wexler

1.1 Overview

OpenlmagelO provides simple but powerful ImageInput and ImageOutput APIs that abstract the reading and writing
of 2D image file formats. They don’t support every possible way of encoding images in memory, but for a reasonable
and common set of desired functionality, they provide an exceptionally easy way for an application using the APIs
support a wide — and extensible — selection of image formats without knowing the details of any of these formats.

Concrete instances of these APIs, each of which implements the ability to read and/or write a different image file
format, are stored as plugins (i.e., dynamic libraries, DLL’s, or DSO’s) that are loaded at runtime. The OpenlmagelO
distribution contains such plugins for several popular formats. Any user may create conforming plugins that implement
reading and writing capabilities for other image formats, and any application that uses OpenlmagelO would be able to
use those plugins.

The library also implements the helper class ImageBuf, which is a handy way to store and manipulate images in
memory. ImageBuf itself uses Imagelnput and ImageOutput for its file I/O, and therefore is also agnostic as to
image file formats. A variety of functions in the ImageBufAlgo namespace are available to perform common image
processing operations on ImageBuf’s.

The ImageCache class transparently manages a cache so that it can access truly vast amounts of image data (thousands
of image files totaling hundreds of GB to several TBs) very efficiently using only a tiny amount (tens of megabytes to a
few GB at most) of runtime memory. Additionally, a TextureSystem class provides filtered MIP-map texture lookups,
atop the nice caching behavior of ImageCache.

Finally, the OpenImagelO distribution contains several utility programs that operate on images, each of which is built
atop this functionality, and therefore may read or write any image file type for which an appropriate plugin is found
at runtime. Paramount among these utilities oiiotool, a command-line image processing engine, and iv, an image

OpenimagelO, Release 2.3.9

viewing application. Additionally, there are programs for converting images among different formats, comparing
image data between two images, and examining image metadata.

All of this is released as “open source” software using the very permissive “BSD 3-clause” license. So you should
feel free to use any or all of OpenlmagelO in your own software, whether it is private or public, open source or
proprietary, free or commercial. You may also modify it on your own. You are encouraged to contribute to the
continued development of OpenlmagelO and to share any improvements that you make on your own, though you are
by no means required to do so.

1.2 Simplifying Assumptions

OpenlmagelO is not the only image library in the world. Certainly there are many fine libraries that implement a
single image format (including the excellent 1ibtiff, 1ibjpeqg, and OpenEXR that OpenlmagelO itself relies
on). Many libraries attempt to present a uniform API for reading and writing multiple image file formats. Most of
these support a fixed set of image formats, though a few of these also attempt to provide an extensible set by using the
plugin approach.

But in our experience, these libraries are all flawed in one or more ways: (1) They either support only a few formats,
or many formats but with the majority of them somehow incomplete or incorrect. (2) Their APIs are not sufficiently
expressive as to handle all the image features we need (such as tiled images, which is critical for our texture library).
(3) Their APIs are foo complete, trying to handle every possible permutation of image format features, and as a result
are horribly complicated.

The third sin is the most severe, and is almost always the main problem at the end of the day. Even among the many
open source image libraries that rely on extensible plugins, we have not found one that is both sufficiently flexible and
has APIs anywhere near as simple to understand and use as those of OpenlmagelO.

Good design is usually a matter of deciding what not to do, and OpenlmagelO is no exception. We achieve power and
elegance only by making simplifying assumptions. Among them:

* OpenlmagelO only deals with ordinary 2D images, and to a limited extent 3D volumes, and image files that
contain multiple (but finite) independent images within them. OpenlmagelO’s support of “movie” files is limited
to viewing them as a sequence of separate frames within the file, but not as movies per se (for example, no
support for dealing with audio or synchronization).

* Pixel data are presented as 8- 16- or 32-bit int (signed or unsigned), 16- 32- or 64-bit float. NOTHING ELSE.
No < 8 bit images, or pixel value boundaries that aren’t byte boundaries. Files with < 8 will appear to the client
application as 8-bit unsigned grayscale images.

e Only fully elaborated, non-compressed data are accepted and returned by the API. Compression or special
encodings are handled entirely within an OpenlmagelO plugin.

* Color space is by default converted to grayscale or RGB. Non-spectral color models, such as XYZ, CMYK, or
YUYV, are converted to RGB upon reading. (There is a way to override this and ask for raw pixel values.)

¢ All color channels can be treated (by apps or readers/writers) as having the same data format (though there is a
way to deal with per-channel formats for apps and readers/writers that truly need it).

* All image channels in a subimage are sampled at the same resolution. For file formats that allow some channels
to be subsampled, they will be automatically up-sampled to the highest resolution channel in the subimage.

* Color information is always in the order R, G, B, and the alpha channel, if any, always follows RGB, and Z
channel (if any) always follows alpha. So if a file actually stores ABGR, the plugin is expected to rearrange it
as RGBA.

It’s important to remember that these restrictions apply to data passed through the APIs, not to the files themselves.
It’s perfectly fine to have an OpenlmagelO plugin that supports YUV data, or 4 bits per channel, or any other exotic
feature. You could even write a movie-reading ImageInput (despite OpenlmagelO’s claims of not supporting movies)

4 Chapter 1. Introduction

OpenimagelO, Release 2.3.9

and make it look to the client like it’s just a series of images within the file. It’s just that all the nonconforming details
are handled entirely within the OpenlmagelO plugin and are not exposed through the main OpenlmagelO APIs.

1.3 Historical Origins

OpenlmagelO is the evolution of concepts and tools I’ve been working on for two decades.

In the 1980’s, every program I wrote that output images would have a simple, custom format and viewer. I soon
graduated to using a standard image file format (TIFF) with my own library implementation. Then I switched to Sam
Leffler’s stable and complete 1ibtiff.

In the mid-to-late-1990’s, I worked at Pixar as one of the main implementors of PhotoRealistic RenderMan, which
had display drivers that consisted of an API for opening files and outputting pixels, and a set of DSO/DLL plugins that
each implement image output for each of a dozen or so different file format. The plugins all responded to the same
API, so the renderer itself did not need to know how to the details of the image file formats, and users could (in theory,
but rarely in practice) extend the set of output image formats the renderer could use by writing their own plugins.

This was the seed of a good idea, but PRMan’s display driver plugin API was abstruse and hard to use. So when I
started Exluna in 2000, Matt Pharr, Craig Kolb, and I designed a new API for image output for our own renderer,
Entropy. This API, called “ExDisplay,” was C++, and much simpler, clearer, and easier to use than PRMan’s display
drivers.

NVIDIA’s Gelato (circa 2002), whose early work was done by myself, Dan Wexler, Jonathan Rice, and Eric Enderton,
had an API called “ImagelO.” ImagelO was much more powerful and descriptive than ExDisplay, and had an API for
reading as well as writing images. Gelato was not only “format agnostic” for its image output, but also for its image
input (textures, image viewer, and other image utilities). We released the API specification and headers (though not
the library implementation) using the BSD open source license, firmly repudiating any notion that the API should be
specific to NVIDIA or Gelato.

For Gelato 3.0 (circa 2007), we refined ImagelO again (by this time, Philip Nemec was also a major influence, in
addition to Dan, Eric, and myself'). This revision was not a major overhaul but more of a fine tuning. Our ideas were
clearly approaching stability. But, alas, the Gelato project was canceled before Gelato 3.0 was released, and despite
our prodding, NVIDIA executives would not open source the full ImagelO code and related tools.

After I left NVIDIA, I was determined to recreate this work once again — and ONLY once more — and release it as
open source from the start. Thus, OpenlmagelO was born. I started with the existing Gelato ImagelO specification
and headers (which were BSD licensed all along), and made further refinements since I had to rewrite the entire
implementation from scratch anyway. I think the additional changes are all improvements.

Over the years and with the help of dozens of open source contributors, OpenlmagelO has expanded beyond the
original simple image format input/output to encompass a wide range of image-related functionality. It has grown into
a foundational technology in many products and tools, particularly for the production of animation and visual effects
for motion pictures (but also many other uses and fields). This is the software you have in your hands today.

! Gelato as a whole had many other contributors; those I've named here are the ones I recall contributing to the design or implementation of the
ImagelO APIs.

1.3. Historical Origins 5

OpenimagelO, Release 2.3.9

1.4

Acknowledgments

OpenlmagelO incorporates, depends upon, or dynamically links against several other open source packages, detailed
below. These other packages are all distributed under licenses that allow them to be used by OpenlmagelO. Where not
specifically noted, they are all using the same BSD license that OpenlmagelO uses. Any omissions or inaccuracies in
this list are inadvertent and will be fixed if pointed out. The full original licenses can be found in the relevant parts of
the source code.

OpenlmagelO incorporates, distributes, or contains derived works of:

The SHA-1 implemenation we use is public domain by Dominik Reichl http://www.dominik-reichl.de/
Squish © 2006 Simon Brown, MIT license. http://sjbrown.co.uk/?code=squish

PugiXML © 2006-2009 by Arseny Kapoulkine (based on work © 2003 Kristen Wegner), MIT license. http:
/Ipugixml.org/

DPX reader/writer © 2009 Patrick A. Palmer, BSD 3-clause license. https://github.com/patrickpalmer/dpx}
lookup3 code by Bob Jenkins, Public Domain. http://burtleburtle.net/bob/c/lookup3.c

xxhash © 2014 Yann Collet, BSD 2-clause license. https://github.com/Cyan4973/xxHash

farmhash © 2014 Google, Inc., MIT license. https://github.com/google/farmhash

gif.h by Charlie Tangora, public domain. https://github.com/ginsweater/gif-h

KissFFT © 2003-2010 Mark Borgerding, 3-clause BSD license. https://github.com/mborgerding/kissfft
CTPL thread pool © 2014 Vitaliy Vitsentiy, Apache License. https://github.com/vit-vit/CTPL

Droid fonts from the Android SDK are distributed under the Apache license. http://www.droidfonts.com

function_view.h contains code derived from LLVM, © 2003-2018 University of Illinois at Urbana-Champaign.
UIUC license (compatible with BSD) http://llvm.org

FindOpenVDB.cmake © 2015 Blender Foundation, BSD license.

FindTBB.cmake © 2015 Justus Calvin, MIT license.

fmt library © Victor Zverovich. MIT license. https://github.com/fmtlib/fmt

UTF-8 decoder © 2008-2009 Bjoern Hoehrmann, MIT license. http://bjoern.hoehrmann.de/utf-8/decoder/dfa
Base-64 encoder © René Nyffenegger, Zlib license. http://www.adp-gmbh.ch/cpp/common/base64.html

stb_sprintf © 2017 Sean Barrett, public domain (or MIT license where that may not apply). https://github.com/
nothings/stb

OpenlmagelO Has the following build-time dependencies (using system installs, referencing as git submodules, or
downloading as part of the build), including link-time dependencies against dynamic libraries:

libtiff © 1988-1997 Sam Leffler and 1991-1997 Silicon Graphics, Inc. http://www.remotesensing.org/libtiff
1JG libjpeg © 1991-1998, Thomas G. Lane. http://www.ijg.org

OpenEXR, Ilmbase, and Half © 2006, Industrial Light & Magic. http://www.openexr.com

zlib © 1995-2005 Jean-loup Gailly and Mark Adler. http://www.zlib.net

libpng © 1998-2008 Glenn Randers-Pehrson, et al. http://www.libpng.org

Boost © various authors. http://www.boost.org

GLEW © 2002-2007 Milan Ikits, et al. http://glew.sourceforge.net

Ptex © 2009 Disney Enterprises, Inc. http://ptex.us

Chapter 1. Introduction

http://www.dominik-reichl.de/
http://sjbrown.co.uk/?code=squish
http://pugixml.org/
http://pugixml.org/
https://github.com/patrickpalmer/dpx
http://burtleburtle.net/bob/c/lookup3.c
https://github.com/Cyan4973/xxHash
https://github.com/google/farmhash
https://github.com/ginsweater/gif-h
https://github.com/mborgerding/kissfft
https://github.com/vit-vit/CTPL
http://www.droidfonts.com
http://llvm.org
https://github.com/fmtlib/fmt
http://bjoern.hoehrmann.de/utf-8/decoder/dfa
http://www.adp-gmbh.ch/cpp/common/base64.html
https://github.com/nothings/stb
https://github.com/nothings/stb
http://www.remotesensing.org/libtiff
http://www.ijg.org
http://www.openexr.com
http://www.zlib.net
http://www.libpng.org
http://www.boost.org
http://glew.sourceforge.net
http://ptex.us

OpenimagelO, Release 2.3.9

* Field3D © 2009 Sony Pictures Imageworks. https://github.com/imageworks/Field3D/

* GIFLIB © 1997 Eric S. Raymond (MIT Licensed). http://giflib.sourceforge.net/

* LibRaw © 2008-2013 LibRaw LLC (LGPL, CDDL, and LibRaw licenses). http://www.libraw.org/
* FFmpeg © various authors and distributed under LGPL. https://www.ffmpeg.org

* FreeType © 1996-2002, 2006 by David Turner, Robert Wilhelm, and Werner Lemberg. Distributed under the
FreeType license (BSD compatible).

¢ JPEG-Turbo © 2009-2015 D. R. Commander. Distributed under the BSD license.
* pybind11 © 2016 Wenzel Jakob. Distributed under the BSD license. https://github.com/pybind/pybind1 1

* OpenJPEG © Universite catholique de Louvain (UCL), et al. Distributed under the BSD 2-clause license.
https://github.com/uclouvain/openjpeg

* OpenVDB © 2012-2018 DreamWorks Animation LLC, Mozilla Public License 2.0. https://www.openvdb.org/
* Thread Building Blocks © Intel. Apache 2.0 license. https://www.threadingbuildingblocks.org/
¢ libheif © 2017-2018 Struktur AG (LGPL). https://github.com/strukturag/libheif

1.4. Acknowledgments 7

https://github.com/imageworks/Field3D/
http://giflib.sourceforge.net/
http://www.libraw.org/
https://www.ffmpeg.org
https://github.com/pybind/pybind11
https://github.com/uclouvain/openjpeg
https://www.openvdb.org/
https://www.threadingbuildingblocks.org/
https://github.com/strukturag/libheif

OpenimagelO, Release 2.3.9

8 Chapter 1. Introduction

CHAPTER
TWO

IMAGE I/0 APl HELPER CLASSES

2.1 Data Type Descriptions: TypeDesc

There are two kinds of data that are important to OpenlmagelO:
* Internal data is in the memory of the computer, used by an application program.

* Native file data is what is stored in an image file itself (i.e., on the “other side” of the abstraction layer that
OpenlmagelO provides).

Both internal and file data is stored in a particular data format that describes the numerical encoding of the values.
OpenlmagelO understands several types of data encodings, and there is a special class, TypeDesc, that allows their
enumeration and is described in the header file OpenImageIO/typedesc.h. A TypeDesc describes a base data
format type, aggregation into simple vector and matrix types, and an array length (if it’s an array).

The remainder of this section describes the C++ API for TypeDesc. See Section~ref{sec:pythontypedesc} for the
corresponding Python bindings.

struct OIIO: :TypeDesc
A TypeDesc describes simple data types.

It frequently comes up (in my experience, with renderers and image handling programs) that you want a way
to describe data that is passed through APIs through blind pointers. These are some simple classes that provide
a simple type descriptor system. This is not meant to be comprehensive for example, there is no provision for
structs, unions, pointers, const, or ‘nested’ type definitions. Just simple integer and floating point, common
aggregates such as 3-points, and reasonably-lengthed arrays thereof.

Public Types

enum BASETYPE
BASETYPE is a simple enum describing the base data types that correspond (mostly) to the C/C++ built-in

types.

Values:

enumerator UNKNOWN
unknown type

enumerator NONE
void/no type

enumerator UINTS8
8-bit unsigned int values ranging from 0..255, (C/C++ unsigned char).

enumerator UCHAR

OpenimagelO, Release 2.3.9

enumerator INTS8
8-bit int values ranging from -128..127, (C/C++ char).

enumerator CHAR

enumerator UINT16
16-bit int values ranging from 0..65535, (C/C++ unsigned short).

enumerator USHORT

enumerator INT16
16-bit int values ranging from -32768..32767, (C/C++ short).

enumerator SHORT

enumerator UINT32
32-bit unsigned int values (C/C++ unsigned int).

enumerator UINT

enumerator INT32
signed 32-bit int values (C/C++ int).

enumerator INT

enumerator UINT64
64-bit unsigned int values (C/C++ unsigned long long on most architectures).

enumerator ULONGLONG

enumerator INT64
signed 64-bit int values (C/C++ long long on most architectures).

enumerator LONGLONG

enumerator HALF
16-bit IEEE floating point values (OpenEXR half).

enumerator FLOAT
32-bit IEEE floating point values, (C/C++ £loat).

enumerator DOUBLE
64-bit IEEE floating point values, (C/C++ double).

enumerator STRING
Character string.

enumerator PTR
A pointer value.

enumerator LASTBASE

enum AGGREGATE

AGGREGATE describes whether our 7ypeDesc is a simple scalar of one of the BASETYPE's, or one of
several simple aggregates.

Note that aggregates and arrays are different. A TypeDesc (FLOAT, 3) is an array of three
floats, a TypeDesc (FLOAT,VEC3) is a single 3-component vector comprised of floats, and
TypeDesc (FLOAT, 3, VEC3) is an array of 3 vectors, each of which is comprised of 3 floats.

Values:

enumerator SCALAR
A single scalar value (such as araw int or £1oat in C). This is the default.

10

Chapter 2. Image I/O API Helper Classes

OpenimagelO, Release 2.3.9

enumerator VEC2
2 values representing a 2D vector.

enumerator VEC3
3 values representing a 3D vector.

enumerator VEC4
4 values representing a 4D vector.

enumerator MATRIX33
9 values representing a 3x3 matrix.

enumerator MATRIX44
16 values representing a 4x4 matrix.

enum VECSEMANTICS
VECSEMANTICS gives hints about what the data represent (for example, if a spatial vector quantity
should transform as a point, direction vector, or surface normal).

Values:

enumerator NOXFORM
No semantic hints.

enumerator NOSEMANTICS
No semantic hints.

enumerator COLOR
Color.

enumerator POINT
Point: a spatial location.

enumerator VECTOR
Vector: a spatial direction.

enumerator NORMAL
Normal: a surface normal.

enumerator TIMECODE
indicates an int [2] representing the standard 4-byte encoding of an SMPTE timecode.

enumerator KEYCODE
indicates an int [7] representing the standard 28-byte encoding of an SMPTE keycode.

enumerator RATIONAL
A VEC2 representing a rational number val [0] / vall[l]

enumerator BOX
A VEC2[2] or VEC3|[2] that represents a 2D or 3D bounds (min/max)

Public Functions

inline constexpr TypeDesc (BASETYPE btype = UNKNOWN, AGGREGATE agg = SCALAR,
VECSEMANTICS semantics = NOSEMANTICS, int arraylen = 0)

noexcept
Construct from a BASETYPE and optional aggregateness, semantics, and arrayness.

inline constexpr TypeDesc (BASETYPE btype, int arraylen) noexcept
Construct an array of a non-aggregate BASETYPE.

2.1. Data Type Descriptions: TypeDesc 11

OpenimagelO, Release 2.3.9

inline constexpr TypeDesc (BASETYPE btype, AGGREGATE agg, int arraylen) noexcept
Construct an array from BASETYPE, AGGREGATE, and array length, with unspecified (or moot) seman-
tic hints.

TypeDesc (string_view typestring)
Construct from a string (e.g., “float[3]”). If no valid type could be assembled, set base to UNKNOWN.

Examples:
TypeDesc ("int") == TypeDesc (TypeDesc: :INT) // C++ 1int32_t
TypeDesc ("float") == TypeDesc (TypeDesc: :FLOAT) // C++ float
TypeDesc ("uint16") == TypeDesc (TypeDesc: :UINT16) // C++ uintlé_t
TypeDesc ("float [4]") == TypeDesc (TypeDesc: :FLOAT, 4) // array
TypeDesc ("point") == TypeDesc (TypeDesc: :FLOAT,

TypeDesc: :VEC3, TypeDesc::POINT)

inline constexpr TypeDesc (const TypeDesc &t) noexcept
Copy constructor.

const char *c_str () const
Return the name, for printing and whatnot. For example, “float”, “int[5]”, “normal”

inline constexpr size_t numelements () const noexcept
Return the number of elements: 1 if not an array, or the array length. Invalid to call this for arrays of
undetermined size.

inline constexpr size_t basevalues () const noexcept
Return the number of basetype values: the aggregate count multiplied by the array length (or 1 if not an
array). Invalid to call this for arrays of undetermined size.

inline constexpr bool is_array () const noexcept
Does this TypeDesc describe an array?

inline constexpr bool is_unsized_array () const noexcept
Does this TypeDesc describe an array, but whose length is not specified?

inline constexpr bool is_sized_array () const noexcept
Does this TypeDesc describe an array, whose length is specified?

inlinessize_t size () const noexcept
Return the size, in bytes, of this type.

inline constexpr 7ypeDesc elementtype () const noexcept
Return the type of one element, i.e., strip out the array-ness.

inline size_t elementsize () const noexcept
Return the size, in bytes, of one element of this type (that is, ignoring whether it’s an array).

inline constexpr TypeDesc scalartype () const
Return just the underlying C scalar type, i.e., strip out the array-ness and the aggregateness.

size_tbasesize () const noexcept
Return the base type size, i.e., stripped of both array-ness and aggregateness.

bool is_floating point () const noexcept
True if it’s a floating-point type (versus a fundamentally integral type or something else like a string).

bool is_signed () const noexcept
True if it’s a signed type that allows for negative values.

inline constexpr bool is_unknown () const noexcept
Shortcut: is it UNKNOWN?

12

Chapter 2. Image I/O API Helper Classes

OpenimagelO, Release 2.3.9

inline constexpr operator bool () const noexcept
if (typedesc) is the same as asking whether it’s not UNKNOWN.

size_t fromstring (string_view typestring)
Set *this to the type described in the string. Return the length of the part of the string that describes the
type. If no valid type could be assembled, return 0 and do not modify *this.

inline constexpr bool operator== (const TypeDesc &t) const noexcept
Compare two TypeDesc values for equality.

inline constexpr bool operator!=(const TypeDesc &t) const noexcept
Compare two TypeDesc values for inequality.

inline constexpr bool equivalent (const TypeDesc &b) const noexcept
Member version of equivalent.

inline constexpr bool is_vec2 (BASETYPE b =FLOAT) const noexcept
Is this a 2-vector aggregate (of the given type, float by default)?

inline constexpr bool is_vec3 (BASETYPE b = FLOAT) const noexcept
Is this a 3-vector aggregate (of the given type, float by default)?

inline constexpr bool is_vec4 (BASETYPE b = FLOAT) const noexcept
Is this a 4-vector aggregate (of the given type, float by default)?

inline constexpr bool is_box2 (BASETYPE b = FLOAT) const noexcept
Is this an array of aggregates that represents a 2D bounding box?

inline constexpr bool is_box3 (BASETYPE b = FLOAT) const noexcept
Is this an array of aggregates that represents a 3D bounding box?

inline void unarray (void) noexcept
Demote the type to a non-array

bool operator< (const TypeDesc &x) const noexcept
Test for lexicographic ‘less’, comes in handy for lots of STL containers and algorithms.

Public Members
unsigned char basetype
C data type at the heart of our type.

unsigned char aggregate
What kind of AGGREGATE is it?

unsigned char vecsemantics
Hint: What does the aggregate represent?

unsigned char reserved
Reserved for future expansion.

intarraylen
Array length, O = not array, -1 = unsized.

2.1. Data Type Descriptions: TypeDesc 13

OpenimagelO, Release 2.3.9

Public Static Functions
static BASETYPE basetype_merge (TypeDesc a, TypeDesc b)

Given base data types of a and b, return a basetype that is a best guess for one that can handle both without
any loss of range or precision.

Friends

inline friend friend constexpr bool operator== (const TypeDesc &t, BASETYPE b) noexcep
Compare a TypeDesc to a basetype (it’s the same if it has the same base type and is not an aggregate or an

array).

inline friend friend constexpr bool operator!= (const TypeDesc &t, BASETYPE b) noexcep
Compare a TypeDesc to a basetype (it’s the same if it has the same base type and is not an aggregate or an
array).

inline friend friend constexpr bool equivalent (const TypeDesc &a, const TypeDesc &b)
TypeDesc’s are equivalent if they are equal, or if their only inequality is differing vector semantics.

A number of static constexpr TypeDesc aliases for common types exist in the outer OpenlmagelO scope:

TypeUnknown TypeFloat TypeColor TypePoint TypeVector TypeNormal
TypeMatrix33 TypeMatrix44 TypeMatrix TypeHalf

TypeInt TypeUInt TypeInt32 TypeUInt32 TypeInt64 TypeUInt64
TypeIntl6 TypeUIntl6 TypelInt8 TypeUInts8

TypeFloat2 TypeVector2 TypeVector2i TypeFloat4

TypeString TypeTimeCode TypeKeyCode

TypeBox2 TypeBox2i TypeBox3 TypeBox3i

TypeRational TypePointer

The only types commonly used to store pixel values in image files are scalars of UINT8, UINT16, float,and half
(the last only used by OpenEXR, to the best of our knowledge).

Note that the TypeDesc (which is also used for applications other than images) can describe many types not
used by OpenlmagelO. Please ignore this extra complexity; only the above simple types are understood by Open-
ImagelO as pixel storage data types, though a few others, including string and MATRIX44 aggregates, are
occasionally used for metadata for certain image file formats (see sec-imageoutput-metadata Sections
sec—-imageoutput-metadata, sec-imageinput-metadata, and the documentation of individual Im-
agelO plugins for details).

2.2 Non-owning string views: string_ view

class OIIO::string view
A string_view is a non-owning, non-copying, non-allocating reference to a sequence of characters. It
encapsulates both a character pointer and a length.

A function that takes a string input (but does not need to alter the string in place) may use a string_view parameter
and accept input that is any of char* (C string), string literal (constant char array), a std::string (C++ string),
or OIIO ustring. For all of these cases, no extra allocations are performed, and no extra copies of the string
contents are performed (as they would be, for example, if the function took a const std::string& argument but
was passed a char™* or string literal).

Furthermore, a function that returns a copy or a substring of one of its inputs (for example, a substr()-like
function) may return a string_view rather than a std::string, and thus generate its return value without any
allocation or copying. Upon assignment to a std::string or ustring, it will properly auto-convert.

14 Chapter 2. Image I/0 API Helper Classes

OpenimagelO, Release 2.3.9

There are two important caveats to using this class:

a. The string_view merely refers to characters owned by another string, so the string_view may not be used
outside the lifetime of the string it refers to. Thus, string_view is great for parameter passing, but it’s not
a good idea to use a string_view to store strings in a data structure (unless you are really sure you know
what you’re doing).

b. Because the run of characters that the szring_view refers to may not be O-terminated, it is important
to distinguish between the data() method, which returns the pointer to the characters, and the c_str()
method, which is guaranteed to return a valid C string that is O-terminated. Thus, if you want to pass
the contents of a string_view to a function that expects a O-terminated string (say, fopen), you must call
fopen(my_string_view.c_str()). Note that the usual case is that the string_view does refer to a O-terminated
string, and in that case c_str() returns the same thing as data() without any extra expense; but in the rare
case that it is not O-terminated, c_s7r() will incur extra expense to internally allocate a valid C string.

Public Functions

inline constexpr string view () noexcept
Default ctr.

inline constexpr string view (const string_view ©)
Copy ctr.

inline constexpr string view (const charT *chars, size_t len)
Construct from char* and length.

inline constexpr string_ view (const charT *chars)
Construct from char*, use strlen to determine length.

inline string_view (const std::string &str) noexcept
Construct from std::string. Remember that a string_view doesn’t have its own copy of the characters, so
don’t use the st ring_view after the original string has been destroyed or altered.

inline std::string str () const
Convert a string_view to a std: : string.

const char *¢_str () const
Explicitly request a O-terminated string. USUALLY, this turns out to be just data(), with no significant
added expense (because most uses of szring_view are simple wrappers of C strings, C++ std::string, or
ustring all of which are O-terminated). But in the more rare case that the string_view represents a non-0-
terminated substring, it will force an allocation and copy underneath.

Caveats:

i. This is NOT going to be part of the C++17 std::string_view, so it’s probably best to avoid this method
if you want to have 100% drop-in compatibility with std::string_view.

ii. Itis NOT SAFE to use c_str() on a string_view whose last char is the end of an allocation because that
next char may only coincidentally be a \0’, which will cause c_s?r() to return the string start (thinking
it’s a valid C string, so why not just return its address?), if there’s any chance that the subsequent char
could change from 0 to non-zero during the use of the result of ¢_sz7(), and thus break the assumption
that it’s a valid C str.

inline operator std::string() const
Convert a string_view to a std: : string.

inline constexpr bool empty () const noexcept
Is the string_view empty, containing no characters?

2.2. Non-owning string views: string view 15

OpenimagelO, Release 2.3.9

inline constexpr const_reference operator[] (size_type pos) const
Element access of an individual character (beware: no bounds checking!).

inline constexpr const_reference at (size_t pos) const
Element access with bounds checking and exception if out of bounds.

inline size_type £ind (string_view s, size_t pos =(0) const noexcept
Find the first occurrence of substring s in *this, starting at position pos.

inline size_type £ind (charT c, size_t pos = 0) const noexcept
Find the first occurrence of character ¢ in *this, starting at position pos.

inline size_type rfind (string_view s, size_t pos = npos) const noexcept
Find the last occurrence of substring s *this, but only those occurrences earlier than position pos.

inline size_type rfind (charT c, size_t pos = npos) const noexcept
Find the last occurrence of character ¢ in *this, but only those occurrences earlier than position pos.

2.3 Efficient unique strings: ustring

class OIIO::ustring
A ustring is an alternative to char* or std::string for storing strings, in which the character sequence is unique
(allowing many speed advantages for assignment, equality testing, and inequality testing).

The implementation is that behind the scenes there is a hash set of allocated strings, so the characters of each
string are unique. A ustring itself is a pointer to the characters of one of these canonical strings. Therefore,
assignment and equality testing is just a single 32- or 64-bit int operation, the only mutex is when a ustring is
created from raw characters, and the only malloc is the first time each canonical ustring is created.

The internal table also contains a std::string version and the length of the string, so converting a ustring to a
std::string (via ustring::string()) or querying the number of characters (via ustring::size() or ustring::length())
is extremely inexpensive, and does not involve creation/allocation of a new std::string or a call to strlen.

We try very hard to completely mimic the API of std::string, including all the constructors, comparisons, itera-
tions, etc. Of course, the charaters of a ustring are non-modifiable, so we do not replicate any of the non-const
methods of std::string. But in most other ways it looks and acts like a std::string and so most templated algorthms
that would work on a “const std::string &” will also work on a ustring.

Usage guidelines:

Compared to standard strings, ustrings have several advantages:

* Each individual ustring is very small in fact, we guarantee that a ustring is the same size and memory
layout as an ordinary char*.

» Storage is frugal, since there is only one allocated copy of each unique character sequence, throughout the
lifetime of the program.

* Assignment from one ustring to another is just copy of the pointer; no allocation, no character copying, no
reference counting.

16 Chapter 2. Image I/0 API Helper Classes

OpenimagelO, Release 2.3.9

Equality testing (do the strings contain the same characters) is a single operation, the comparison of the
pointer.

Memory allocation only occurs when a new ustring is constructed from raw characters the FIRST time
subsequent constructions of the same string just finds it in the canonical string set, but doesn’t need to
allocate new storage. Destruction of a ustring is trivial, there is no de-allocation because the canonical
version stays in the set. Also, therefore, no user code mistake can lead to memory leaks.

But there are some problems, too. Canonical strings are never freed from the table. So in some sense all the
strings “leak”, but they only leak one copy for each unique string that the program ever comes across. Also,
creation of unique strings from raw characters is more expensive than for standard strings, due to hashing, table
queries, and other overhead.

On the whole, ustrings are a really great string representation

L]

if you tend to have (relatively) few unique strings, but many copies of those strings;

if the creation of strings from raw characters is relatively rare compared to copying or comparing to existing
strings;

if you tend to make the same strings over and over again, and if it’s relatively rare that a single unique
character sequence is used only once in the entire lifetime of the program;

if your most common string operations are assignment and equality testing and you want them to be as fast
as possible;

if you are doing relatively little character-by-character assembly of strings, string concatenation, or other
“string manipulation” (other than equality testing).

ustrings are not so hot

L]

if your program tends to have very few copies of each character sequence over the entire lifetime of the
program;

if your program tends to generate a huge variety of unique strings over its lifetime, each of which is used
only a short time and then discarded, never to be needed again;

if you don’t need to do a lot of string assignment or equality testing, but lots of more complex string
manipulation.

Public Functions

inline ustring (void) noexcept

Default ctr for ustring make an empty string.

inline explicit ustring (const char *str)

Construct a ustring from a null-terminated C string (char *).

inline explicit ustring (string_view str)

Construct a ustring from a string_view, which can be auto-converted from either a null-terminated C string
(char *) or a C++ std::string.

inline ustring (const char *str, size_type pos, size_type n)

Construct a ustring from at most n characters of str, starting at position pos.

inline ustring (const char *str, size_type n)

Construct a ustring from the first n characters of str.

inline ustring (size_type n, char c¢)

Construct a ustring from n copies of character c.

23.

Efficient unique strings: ustring 17

OpenimagelO, Release 2.3.9

inline ustring (const std::string &str, size_type pos, size_type n = npos)
Construct a ustring from an indexed substring of a std::string.

inline ustring (const ustring &str) noexcept
Copy construct a ustring from another ustring.

inline ustring (const ustring &str, size_type pos, size_type n = npos)
Construct a ustring from an indexed substring of a ustring.

inline ~ustring () noexcept
ustring destructor.

inline operator string view () const noexcept
Conversion to string_view.

inline explicit operator std::string() const noexcept
Conversion to std::string (explicit only!).

inline const ustring &assign (const ustring &str)
Assign a ustring to *this.

inline const ustring &assign (const ustring &str, size_type pos, size_type n = npos)
Assign a substring of a ustring to *this.

inline const ustring &assign (const std::string &str)
Assign a std::string to *this.

inline const ustring &assign (const std::string &str, size_type pos, size_type n = npos)
Assign a substring of a std::string to *this.

inline const ustring &assign (const char *str)
Assign a null-terminated C string (char*) to *this.

inline const ustring &assign (const char *str, size_type n)
Assign the first n characters of str to *this.

inline const ustring &assign (size_type n, char c)
Assign n copies of ¢ to *this.

inline const ustring &assign (string_view str)
Assign a string_view to *this.

inline const ustring &operator= (const ustring &str)
Assign a ustring to another ustring.

inline const ustring &operator= (const char *str)
Assign a null-terminated C string (char *) to a ustring.

inline const ustring &operator= (const std::string &str)
Assign a C++ std::string to a ustring.

inline const ustring &operator= (string_view str)
Assign a string_view to a ustring.

inline const ustring &operator= (char c)
Assign a single char to a ustring.

inline const char *c_str () const noexcept
Return a C string representation of a ustring.

inline const char *data () const noexcept
Return a C string representation of a ustring.

18 Chapter 2. Image I/0 API Helper Classes

OpenimagelO, Release 2.3.9

inline const std::string &string () const noexcept
Return a C++ std::string representation of a ustring.

inline void clear (void) noexcept
Reset to an empty string.

inline size_t length (void) const noexcept
Return the number of characters in the string.

inline size_t hash (void) const noexcept
Return a hashed version of the string.

inline size_t size (void) const noexcept
Return the number of characters in the string.

inline bool empty (void) const noexcept
Is the string empty i.e., is it nullptr or does it point to an empty string?

inline const_iterator begin () const noexcept
Return a const_iterator that references the first character of the string.

inline const_iterator end () const noexcept
Return a const_iterator that references the end of a traversal of the characters of the string.

inline const_reverse_iterator rbegin () const noexcept
Return a const_reverse_iterator that references the last character of the string.

inline const_reverse_iterator rend () const noexcept
Return a const_reverse_iterator that references the end of a reverse traversal of the characters of the string.

inline const_reference operator|[] (size_type pos) const noexcept
Return a reference to the character at the given position. Note that it’s up to the caller to be sure pos is
within the size of the string.

inline size_type copy (char *s, size_type n, size_type pos =0) const
Dump into character array s the characters of this ustring, beginning with position pos and copying at most
n characters.

inline ustring substr (size_type pos = 0, size_type n = npos) const
Returns a substring of the ustring object consisting of n characters starting at position pos.

inline int compare (string_view str) const noexcept
Return 0O if *this is lexicographically equal to str, -1 if *this is lexicographically earlier than str, 1 if *this
is lexicographically after str.

inline int compare (const char *str) const noexcept
Return 0 if *this is lexicographically equal to str, -1 if *this is lexicographically earlier than str, 1 if *this
is lexicographically after str.

inline bool operator== (const usiring &str) const noexcept
Test two ustrings for equality are they comprised of the same sequence of characters. Note that because
ustrings are unique, this is a trivial pointer comparison, not a char-by-char loop as would be the case with
a char* or a std::string.

inline bool operator!= (const ustring &str) const noexcept
Test two ustrings for inequality are they comprised of different sequences of characters. Note that because
ustrings are unique, this is a trivial pointer comparison, not a char-by-char loop as would be the case with
a char* or a std::string.

inline bool operator== (const std::string &x) const noexcept
Test a ustring (*this) for lexicographic equality with std::string x.

23.

Efficient unique strings: ustring 19

OpenimagelO, Release 2.3.9

inline bool operator== (string_view x) const noexcept
Test a ustring (*this) for lexicographic equality with string_view X.

inline bool operator== (const char *x) const noexcept
Test a ustring (this) for lexicographic equality with char X.

inline bool operator!= (const std::string &x) const noexcept
Test a ustring (*this) for lexicographic inequality with std::string x.

inline bool operator!= (string_view x) const noexcept
Test a ustring (*this) for lexicographic inequality with string_view X.

inline bool operator!=(const char *x) const noexcept
Test a ustring (this) for lexicographic inequality with char X.

inline bool operator< (const ustring &x) const noexcept
Test for lexicographic ‘less’, comes in handy for lots of STL containers and algorithms.

Public Static Functions

template<typename ...Args>

static inline ustring sprint £ (const char *fint, const Args&... args)
Construct a ustring in a printf-like fashion. In other words, something like: ustring s = us-
tring::sprintf (“blah %d %g”, (int)foo, (float)bar); The argument list is fully typesafe. The formatting
of the string will always use the classic “C” locale conventions (in particular, ‘.” as decimal separator for

float values).

template<typename ...Args>

static inline ustring fmt format (const char *fmt, const Args&... args)
Construct a ustring in a fmt::format-like fashion. In other words, something like: ustring s = us-
tring::fmtformat(“blah {} {}”, (int)foo, (float)bar); The argument list is fully typesafe. The formatting
of the string will always use the classic “C” locale conventions (in particular, ‘" as decimal separator for

float values).

template<typename ...Args>

static inline ustring format (const char *fmt, const Args&... args)
NOTE: Semi-DEPRECATED! This will someday switch to behave like fmt::format (or future std::format)
but for now, it is back compatible and equivalent to sprintf.

static ustring concat (string view s, string_view t)
Concatenate two strings, returning a ustring, implemented carefully to not perform any redundant copies
or allocations. This is semantically equivalentto ustring: : sprintf ("$s%s", s, t),butismore
efficient.

static std::string getstats (bool verbose = true)
Return the statistics output as a string.

static size_t memory ()
Return the amount of memory consumed by the ustring table.

staticsize_ttotal_ustrings /()
Return the total number of ustrings in the internal table.

staticssize_thash_collisions (std::vector<ustring> *collisions = nullptr)
Return the total number ustrings that have the exact hash as another ustring. If collisions is passed,
store all the colliding ustrings in the vector.

static const char *make_unique (string_view str)
Given a string_view, return a pointer to the unique version kept in the internal table (creating a new table
entry if we haven’t seen this sequence of characters before). N.B.: this is equivalent to ustring(str).c_s7().

20

Chapter 2. Image I/O API Helper Classes

OpenimagelO, Release 2.3.9

It’s also the routine that is used directly by ustring’s internals to generate the canonical unique copy of the
characters.

static inline bool is_unique (const char *str)
Is this character pointer a unique ustring representation of those characters? Useful for diagnostics and
debugging.

static inline ustring £rom_unique (const char *unique)
Create a ustring from characters guaranteed to already be ustring-clean, without having to run through the
hash yet again. Use with extreme caution!!!

Friends

inline friend friend int compare (const std::string &a, const ustring &b) noexcept
Return 0 if a is lexicographically equal to b, -1 if a is lexicographically earlier than b, 1 if a is lexicograph-
ically after b.

inline friend friend bool operator== (const std::string &a, const ustring &b) noexcept
Test for lexicographic equality between std::string a and ustring b.

inline friend friend bool operator== (string view a, const ustring &b) noexcept
Test for lexicographic equality between string_view a and ustring b.

inline friend friend bool operator== (const char *a, const ustring &b) noexcept
Test for lexicographic equality between char* a and ustring b.

inline friend friend bool operator!= (const std::string &a, const ustring &b) noexcept
Test for lexicographic inequality between std::string a and ustring b.

inline friend friend bool operator!= (string view a, const ustring &b) noexcept
Test for lexicographic inequality between string_view a and ustring b.

inline friend friend bool operator!= (const char *a, const ustring &b) noexcept
Test for lexicographic inequality between char* a and ustring b.

inline friend friend std::ostream & operator<< (std::ostream &out, const ustring &str)
Generic stream output of a ustring.

struct TableRep

2.4 Non-owning array views: span / cspan

template<typename T, oiio_span_size_type Extent = dynamic_extent>

class OIIO: :span
span<T> is a non-owning, non-copying, non-allocating reference to a contiguous array of T objects known
length. A ‘span” encapsulates both a pointer and a length, and thus is a safer way of passing pointers around
(because the function called knows how long the array is). A function that might ordinarily take a T+ and a
length could instead just take a span<T>.

A span<T> is mutable (the values in the array may be modified). A non-mutable (i.e., read-only) reference
would be span<const T>. Thus, a function that might ordinarily take a const Tx and a length could
instead take a span<const T>.

For convenience, we also define cspan<T> as equivalent to span<const T>.

2.4. Non-owning array views: span/ cspan 21

OpenimagelO, Release 2.3.9

A span may be initialized explicitly from a pointer and length, by initializing with a std: : vector<T>, or
by initalizing with a constant (treated as an array of length 1). For all of these cases, no extra allocations are
performed, and no extra copies of the array contents are made.

Important caveat: The span merely refers to items owned by another array, so the span should not be used
beyond the lifetime of the array it refers to. Thus, span is great for parameter passing, but it’s not a good idea
to use a span to store values in a data structure (unless you are really sure you know what you’re doing).

Public Functions

inline constexpr span () noexcept
Default constructor the span points to nothing.

template<class U, oiio_span_size_type N>
inline constexpr span (const span<U, N> ©) noexcept
Copy constructor (copies the span pointer and length, NOT the data).

constexpr span (const span ©) noexcept = default
Copy constructor (copies the span pointer and length, NOT the data).

inline constexpr span (pointer data, size_type size) noexcept
Construct from T* and length.

inline constexpr span (pointer b, pointer ¢) noexcept
Construct from begin and end pointers.

inline constexpr span (7T &data)
Construct from a single T&.

template<size_t N>

inline constexpr span (7 (&data)[N])
Construct from a fixed-length C array. Template magic automatically finds the length from the declared
type of the array.

template<class Allocator>
inline constexpr span (std::vector<7, Allocator> &v)
Construct from std::vector<T>.

template<class Allocator>

inline span (const std::vector<value_type, Allocator> &v)
Construct from const std::vector<T>. This turns const std::vector<T> into a
span<const T> (the span isn’t const, but the data it points to will be).

template<size_t N>
inline constexpr span (std::array<value_type, N> &arr)
Construct from mutable element std::array.

template<size_t N>
inline constexpr span (const std::array<value_type, N> &arr)
Construct from read-only element std::array.

inline constexpr span (std::initializer_list<7> il)
Construct an span from an initializer_list.

inline span &operator= (const span ©)
Assignment copies the pointer and length, not the data.

template<size_type Count>
inline constexpr span<element_type, Count> £irst () const
Subview containing the first Count elements of the span.

22

Chapter 2. Image I/O API Helper Classes

OpenimagelO, Release 2.3.9

template<size_type Count>
inline constexpr span<element_type, Count> last () const
Subview containing the last Count elements of the span.

Additionally, there is a convenience template:

template<typename T>
using cspan =span<const 7>
cspan<T> is a synonym for a non-mutable span<const T>.

2.5 Rectangular region of interest: ROI

struct OIIO::ROI
ROI is a small helper struct describing a rectangular region of interest in an image. The region is [xbegin,xend)
x [begin,yend) x [zbegin,zend), with the “end” designators signifying one past the last pixel in each dimension,
ala STL style.

ROI data members

The data members are:

int xbegin, xend, ybegin, yend, zbegin, zend;
int chbegin, chend;

These describe the spatial extent [xbegin,xend) x [ybegin,yend) x [zbegin,zend) And the channel extent: [chbe-
gin,chend)]

Spatial size functions.

The width, height, and depth of the region.

inline constexpr int width () const noexcept
Height.

inline constexpr int height () const noexcept
Width.

inline constexpr int depth () const noexcept
Depth.

2.5. Rectangular region of interest: ROI 23

OpenimagelO, Release 2.3.9

Public Functions

inline constexpr ROI () noexcept
Default constructor is an undefined region. Note that this is also interpreted as A/l().

inline constexpr ROI (int xbegin, int xend, int ybegin, int yend, int zbegin = 0, int zend = 1, int
chbegin = 0, int chend = 10000) noexcept
Constructor with an explicitly defined region.

inline constexpr bool defined () const noexcept
Is a region defined?

inline constexpr int nchannels () const noexcept
Number of channels in the region. Beware this defaults to a huge number, and to be meaningful you must
consider std::min (imagebuf.nchannels(), roi.nchannels()).

inline constexpr imagesize_t npixels () const noexcept
Total number of pixels in the region.

inline constexpr bool contains (int x, int y, int z =0, int ch = 0) const noexcept
Test if the coordinate is within the ROI.

inline constexpr bool contains (const ROI &other) const noexcept
Test if another ROI is entirely within our RO!.

Public Static Functions

static inline constexpr RO/ All () noexcept
All() is an alias for the default constructor, which indicates that it means “all” of the image, or no region
restriction. For example, float myfunc (ImageBuf &buf, RO! roi = ROI::All()); Note that this is equivalent
to: float myfunc (ImageBuf &buf, RO/ roi = {});

Friends

inline friend friend constexpr bool operator== (const ROI &a, const ROI &b) noexcept
Test equality of two ROIs.

inline friend friend constexpr bool operator!= (const ROI &a, const ROI &b) noexcept
Test inequality of two ROIs.

inline friend friend std::ostream & operator<< (std::ostream &out, const ROI &roi)
Stream output of the range.

In addition, there are several related helper functions that involve ROI:

inline constexpr RO/ OII0: :roi_union (const ROI &A, const ROI &B) noexcept
Union of two regions, the smallest region containing both.

inline constexpr RO/ OII0: :roi_intersection (const RO/ &A, const ROI &B) noexcept
Intersection of two regions.

ROI get_roi (const ImageSpec &spec)

ROI get_roi_full (const ImageSpec &spec)
Return the ROI describing spec’s pixel data window (the x, y, z, width, height, depth fields) or the full (display)
window (the full_x, full_y, full_z, full_width, full_height, full_depth fields), respectively.

void set_roi (const ImageSpec &spec, const ROI &newroi)

void set_roi_full (const ImageSpec &spec, const ROI &newroi)

24 Chapter 2. Image I/0 API Helper Classes

OpenimagelO, Release 2.3.9

2.6

Alters the spec so to make its pixel data window or the full (display) window match newroi.

Image Specification: ImageSpec

An ImageSpec is a structure that describes the complete format specification of a single image. It contains:

The image resolution (number of pixels) and origin. This specifies what is often called the “pixel data window.”

The full size and offset of an abstract “full” or “display” window. Differing full and data windows can indicate
that the pixels are a crop region or a larger image, or contain overscan pixels.

Whether the image is organized into ziles, and if so, the tile size.
The native data format of the pixel values (e.g., float, 8-bit integer, etc.).

The number of color channels in the image (e.g., 3 for RGB images), names of the channels, and whether any
particular channels represent alpha and depth.

A user-extensible (and format-extensible) list of any other arbitrarily-named and -typed data that may help
describe the image or its disk representation.

The remainder of this section describes the C++ API for ImageSpec. See Section ImageSpec for the corresponding
Python bindings.

class OIIO::ImageSpec

ImageSpec describes the data format of an image dimensions, layout, number and meanings of image channels.

The width, height, depth are the size of the data of this image, i.e., the number of pixels in each
dimension. A depth greater than 1 indicates a 3D “volumetric” image. The x, vy, =z fields indicate the
origin of the pixel data of the image. These default to (0,0,0), but setting them differently may indicate that
this image is offset from the usual origin. Therefore the pixel data are defined over pixel coordinates [x ...
x+width-1] horizontally, [y ... y+height-1] vertically, and [z ... z+depth-1]in depth.

The analogous full_width, full_height, full_depth and full_x, full_y, full_z fields de-
fine a “full” or “display” image window over the region [full_x ... full_x+full_width-1] horizon-
tally, [full_y ... full_y+full_height-1] vertically, and [full_z... full_z+full_depth-1]in
depth.

Having the full display window different from the pixel data window can be helpful in cases where you want
to indicate that your image is a crop window of a larger image (if the pixel data window is a subset of the full
display window), or that the pixels include overscan (if the pixel data is a superset of the full display window),
or may simply indicate how different non-overlapping images piece together.

For tiled images, tile_width, tile_height, and tile_depth specify that the image is stored in a file
organized into rectangular tiles of these dimensions. The default of O value for these fields indicates that the
image is stored in scanline order, rather than as tiles.

ImageSpec data members

The ImageSpec contains data fields for the values that are required to describe nearly any image, and an
extensible list of arbitrary attributes that can hold metadata that may be user-defined or specific to individual file
formats.

Here are the hard-coded data fields:

int x
origin (upper left corner) of pixel data

2.6. Image Specification: ImageSpec 25

OpenimagelO, Release 2.3.9

inty

origin (upper left corner) of pixel data

int z

origin (upper left corner) of pixel data

int width
width of the pixel data window

int height
height of the pixel data window

int depth

depth of pixel data, >1 indicates a “volume”

int full_x
origin of the full (display) window

int full_y
origin of the full (display) window

int full =z
origin of the full (display) window

int full_width
width of the full (display) window

int full_height
height of the full (display) window

int full_depth
depth of the full (display) window

inttile_width
tile width (0 for a non-tiled image)

inttile_height
tile height (0 for a non-tiled image)

inttile_depth

tile depth (O for a non-tiled image, 1 for a non-volume image)

int nchannels

number of image channels, e.g., 4 for RGBA

TypeDesc format

Data format of the channels. Describes the native format of the pixel data values themselves,
as a TypeDesc. Typical values would be TypeDesc::UINT8 for 8-bit unsigned values,
TypeDesc: : FLOAT for 32-bit floating-point values, etc.

std::vector<TypeDesc> channelformats

Optional per-channel data formats. If all channels of the image have the same data format, that will be
described by format and channelformats will be empty (zero length). If there are different data
formats for each channel, they will be described in the channel formats vector, and the format field
will indicate a single default data format for applications that don’t wish to support per-channel formats
(usually this will be the format of the channel that has the most precision).

std::vector<std::string> channelnames

The names of each channel, in order. Typically this will be “R”, “G”, “B”, “A” (alpha), “Z” (depth), or

other arbitrary names.

Chapter 2. Image I/O API Helper Classes

OpenimagelO, Release 2.3.9

int alpha_channel
The index of the channel that represents alpha (pixel coverage and/or transparency). It defaults to -1 if no
alpha channel is present, or if it is not known which channel represents alpha.

int z_channel
The index of the channel that represents z or depth (from the camera). It defaults to -1 if no depth channel
is present, or if it is not know which channel represents depth.

bool deep
True if the image contains deep data. If true, this indicates that the image describes contains “deep”
data consisting of multiple samples per pixel. If false, it’s an ordinary image with one data value (per
channel) per pixel.

ParamValueList extra_attribs
A list of arbitrarily-named and arbitrarily-typed additional attributes of the image, for any metadata not
described by the hard-coded fields described above. This list may be manipulated with the att ribute ()
and find attribute () methods.

Public Functions

ImageSpec (TypeDesc format = TypeDesc::UNKNOWN) noexcept
Constructor: given just the data format, set all other fields to something reasonable.

ImageSpec (int xres, int yres, int nchans, TypeDesc fmt = TypeUInt§) noexcept
Constructs an TmageSpec with the given x and y resolution, number of channels, and pixel data format.

All other fields are set to the obvious defaults the image is an ordinary 2D image (not a volume), the image
is not offset or a crop of a bigger image, the image is scanline-oriented (not tiled), channel names are “R”,
“G”, “B”” and “A” (up to and including 4 channels, beyond that they are named “channel *n*”), the fourth
channel (if it exists) is assumed to be alpha.

explicit ImageSpec (const ROI &roi, TypeDesc fmt = TypeUlnt8) noexcept
Construct an TmageSpec whose dimensions (both data and “full”’) and number of channels are given by
the ROI, pixel data type by fmt, and other fields are set to their default values.

void set_format (TypeDesc fint) noexcept
Set the data format, and clear any per-channel format information in channelformats.

void default_channel_names () noexcept
Sets the channelnames to reasonable defaults for the number of channels. Specifically, channel names
are set to “R”, “G”, “B,” and “A” (up to and including 4 channels, beyond that they are named “chan-
nel*n*”.

inline size_t channel_bytes () const noexcept
Returns the number of bytes comprising each channel of each pixel (i.e., the size of a single value of the
type described by the format field).

size_t channel_bytes (int chan, bool native = false) const noexcept
Return the number of bytes needed for the single specified channel. If native is false (default), compute
the size of one channel of this—->format, but if native is true, compute the size of the channel in terms
of the “native” data format of that channel as stored in the file.

size_t pixel_bytes (bool native = false) const noexcept
Return the number of bytes for each pixel (counting all channels). If nat ive is false (default), assume all
channels are in this->format, but if native is true, compute the size of a pixel in the “native” data
format of the file (these may differ in the case of per-channel formats).

size_t pixel_bytes (int chbegin, int chend, bool native = false) const noexcept
Return the number of bytes for just the subset of channels in each pixel described by [chbegin,chend). If

2.6. Image Specification: ImageSpec 27

OpenimagelO, Release 2.3.9

native is false (default), assume all channels are in this->format, but if native is true, compute the size of a
pixel in the “native” data format of the file (these may differ in the case of per-channel formats).

imagesize_t scanline_bytes (bool native = false) const noexcept
Returns the number of bytes comprising each scanline, i.e., pixel_bytes (native) x width This
will return std: :numeric_limits<imagesize_t>max () in the event of an overflow where it’s
not representable in an imagesize_t.

imagesize_ttile_pixels () const noexcept
Return the number of pixels comprising a tile (or O if it is not a tiled image). This will return
std::numeric_limits<imagesize_t>max () in the event of an overflow where it’s not repre-
sentable in an imagesize_t.

imagesize_t tile_bytes (bool native = false) const noexcept
Returns the number of bytes comprising an image tile, i.e., pixel_bytes (native) =«
tile_width * tile_height * tile_depth If native is false (default), assume all channels are
in this->format, butif native is true, compute the size of a pixel in the “native” data format of the
file (these may differ in the case of per-channel formats).

imagesize_t image_pixels () const noexcept
Return the number of pixels for an entire image. This will return
std::numeric_limits<imagesize_t>max () in the event of an overflow where it’s not
representable in an imagesize_t.

imagesize_t image_bytes (bool native = false) const noexcept
Returns the number of bytes comprising an entire image of these dimensions,
ie., pixel_bytes(native) x width * height * depth This will return
std::numeric_limits<image size_t>max () in the event of an overflow where it’s not
representable in an imagesize_t. If native is false (default), assume all channels are in
this->format, but if native is true, compute the size of a pixel in the “native” data format of the
file (these may differ in the case of per-channel formats).

inline bool size_t_safe () const noexcept
Verify that on this platform, a size_t is big enough to hold the number of bytes (and pixels) in a scanline,
a tile, and the whole image. If this returns false, the image is much too big to allocate and read all at once,
so client apps beware and check these routines for overflows!

void attribute (string_view name, TypeDesc type, const void *value)
Add a metadata attribute to extra_attribs, with the given name and data type. The value pointer
specifies the address of the data to be copied.

inline void attribute (string_view name, unsigned int value)
Add an unsigned int attribute to extra_attribs.

inline void attribute (string_view name, int value)
Add an int attribute to extra_attribs.

inline void attribute (string_view name, float value)
Add a f£loat attribute to extra_attribs.

inline void attribute (string_view name, string_view value)
Add a string attribute to extra_attribs.

void attribute (string_view name, TypeDesc type, string_view value)

Parse a string containing a textual representation of a value of the given type, and add that as an attribute
to extra_attribs. Example:

spec.attribute ("temperature", TypeString, "-273.15");

28

Chapter 2. Image I/O API Helper Classes

OpenimagelO, Release 2.3.9

void erase_attribute (string_view name, TypeDesc searchtype = TypeDesc::UNKNOWN, bool cas-

esensitive = false))))
Searches extra_attribs for any attributes matching name (as a regular expression), removing them

entirely from extra_attribs. If searchtype is anything other than TypeDesc: : UNKNOWN,
matches will be restricted only to attributes with the given type. The name comparison will be case-
sensitive if casesensitive is true, otherwise in a case-insensitive manner.

ParamValue *£ind_attribute (string_view name, TypeDesc searchtype = TypeDesc::UNKNOWN,

bool casesensitive = false))))
Searches extra_attribs for an attribute matching name, returning a pointer to the attribute record,

or NULL if there was no match. If searchtype is anything other than TypeDesc: : UNKNOWN,
matches will be restricted only to attributes with the given type. The name comparison will be exact if
casesensitive is true, otherwise in a case-insensitive manner if caseinsensitive is false.

const ParamValue *£find_attribute (string view name, ParamValue &tmpparam, TypeDesc
searchtype = TypeDesc::UNKNOWN, bool casesensitive =

) false) const)
Search for the named attribute and return the pointer to its ParamValue record, or NULL if not found.

This variety of find_attribute (} can retrieve items such as “width”, which are data members
of the TmageSpec, but not in extra_attribs. The tmpparam is a storage area owned by the
caller, which is used as temporary buffer in cases where the information does not correspond to an actual
extra_attribs (in this case, the return value will be & tmpparam). The extra names it understands
are:

o NMym lly non "width" "height n n depth" n full_x" "full_y n n full_z n
"full _width" "full _height" "full_ depth"

Returns the TmageSpec fields of those names (despite the fact that they are technically not arbitrary
named attributes in extra_attribs). All are of type int.

e "datawindow"

Without a type, or if requested explicitly as an int [4], returns the OpenEXR-like pixel data min
and max coordinates, as a 4-element integer array: { x, y, x+width-1, y+height-1 }.If
instead you specifically request as an int [6], it will return the volumetric data window, { x, v,
z, xt+twidth-1, y+theight-1, z+depth-1 }.

¢ "displaywindow"

Without a type, or if requested explicitly as an int[4], returns the OpenEXR-like pixel
display min and max coordinates, as a 4-element integer array: { full_x, full_y,
full_x+full_width-1, full_y+full_height-1 }. If instead you specifically request
as an int [6], it will return the volumetric display window, { full_x, full_y, full_z,
full x+full_width-1, full_y+full height-1, full_z+full_depth-1 }.

EXAMPLES

ImageSpec spec; // has the info

Imath::Box2i dw; // we want the displaywindow here

ParamValue tmp; // so we can retrieve pseudo-values

TypeDesc int4 ("int[4]"); // Equivalent: TypeDesc int4 (TypeDesc::INT,4);
const ParamValuex p = spec.find_attribute ("displaywindow", 1int4);

if (p)

dw = Imath::Box2i (p—>get<int>(0), p->get<int> (1),
p->get<int>(2), p->get<int>(3));

p = spec.find_attribute ("temperature", TypeFloat);

(continues on next page)

2.6. Image Specification: ImageSpec 29

OpenimagelO, Release 2.3.9

(continued from previous page)

if (p)
float temperature = p->get<float>();

TypeDesc getattributetype (string_view name, bool casesensitive = false) const
If the named attribute can be found in the TmageSpec, return its data type. If no such attribute exists,
return TypeUnknown.

This was added in version 2.1.

bool getattribute (string_view name, TypeDesc type, void *value, bool casesensitive = false)

const
If the TmageSpec contains the named attribute and its type matches t ype, copy the attribute value into

the memory pointed to by val (it is up to the caller to ensure there is enough space) and return t rue. If
no such attribute is found, or if it doesn’t match the type, return false and do not modify val.

EXAMPLES:

ImageSpec spec;

// Retrieving an integer attribute:
int orientation = 0;
spec.getattribute ("orientation", Typelnt, &orientation);

// Retrieving a string attribute with a charx*:
const charx compression = nullptr;
spec.getattribute ("compression", TypeString, &compression);

// Alternately, retrieving a string with a ustring:
ustring compression;
spec.getattribute ("compression", TypeString, &compression);

Note that when passing a string, you need to pass a pointer to the char*, not a pointer to the first character.
Also, the char« will end up pointing to characters owned by the TmageSpec; the caller does not need
to ever free the memory that contains the characters.

This was added in version 2.1.

int get_int_attribute (string_view name, int defaultval = 0) const
Retrieve the named metadata attribute and return its value as an int. Any integer type will convert to
int by truncation or expansion, string data will parsed into an int if its contents consist of of the text
representation of one integer. Floating point data will not succeed in converting to an int. If no such
metadata exists, or are of a type that cannot be converted, the defaultval will be returned.

float get_float_attribute (string_view name, float defaultval =0) const
Retrieve the named metadata attribute and return its value as a £1oat. Any integer or floating point type
will convert to £ 1oat in the obvious way (like a C cast), and so will string metadata if its contents consist
of of the text representation of one floating point value. If no such metadata exists, or are of a type that
cannot be converted, the defaultval will be returned.

string_view get_string_attribute (string_view name, string_view defaultval = string_view())

const
Retrieve any metadata attribute, converted to a string. If no such metadata exists, the defaultval will

be returned.

std::string serialize (SerialFormat format, SerialVerbose verbose = SerialDetailed) const
Returns, as a string, a serialized version of the TmageSpec. The format may be either
ImageSpec: :SerialText or ImageSpec::SerialXML. The verbose argument may be
one of: ImageSpec::SerialBrief (just resolution and other vital statistics, one line for
SerialText, ImageSpec::SerialDetailed (contains all metadata in original form), or

30

Chapter 2. Image I/O API Helper Classes

OpenimagelO, Release 2.3.9

ImageSpec: :SerialDetailedHuman (contains all metadata, in many cases with human-readable
explanation).

std::string to_xml () const
Converts the contents of the TmageSpec as an XML string.

void £from_xml (const char *xml)
Populates the fields of the Tmage Spec based on the XML passed in.

std::pair<string_view, int> decode_compression_metadata (string_view defaultcomp ="", int de-

faultqual =-1) const
Hunt for the “Compression” and “CompressionQuality” settings in the spec and turn them into the com-

pression name and quality. This handles compression name/qual combos of the form “name:quality”.

inline bool valid_tile_range (int xbegin, int xend, int ybegin, int yend, int zbegin, int zend)

noexcept
Helper function to verify that the given pixel range exactly covers a set of tiles. Also returns false if the

spec indicates that the image isn’t tiled at all.

inline TypeDesc channelformat (int chan) const
Return the channelformat of the given channel. This is safe even if channelformats is not filled out.

inline string_view channel_name (int chan) const
Return the channel name of the given channel. This is safe even if channelnames is not filled out.

inline void get_channelformats (std::vector<TypeDesc> &formats) const
Fill in an array of channel formats describing all channels in the image. (Note that this differs slightly from
the member data channelformats, which is empty if there are not separate per-channel formats.)

int channelindex (string_view name) const
Return the index of the channel with the given name, or -1 if no such channel is present in
channelnames.

inline ROl roi () const noexcept
Return pixel data window for this /mageSpec expressed as a ROI.

inline ROl roi_full () const noexcept
Return full/display window for this ImageSpec expressed as a ROI.

inline void set_roi (const RO/ &r) noexcept
Set pixel data window parameters (x, y, z, width, height, depth) for this /mageSpec from an ROI. Does
NOT change the channels of the spec, regardless of r.

inline void set_roi_full (const RO/ &r) noexcept
Set full/display window parameters (full_x, full_y, full_z, full_width, full_height, full_depth) for this /m-
ageSpec from an ROI. Does NOT change the channels of the spec, regardless of r.

inline void copy_dimensions (const lmageSpec &other)
Copy from other the image dimensions (X, y, z, width, height, depth, full*, nchannels, format) and data
types. It does not copy arbitrary named metadata or channel names (thus, for an Tmage Spec with lots of
metadata, it is much less expensive than copying the whole thing with operator=()).

inline bool undefined () const noexcept
Returns t rue for a newly initialized (undefined) TmageSpec. (Designated by no channels and undefined
data type true of the uninitialized state of an /mageSpec, and presumably not for any /mageSpec that is
useful or purposefully made.)

inline AttrDelegate</mageSpec> operator[] (string_view name)
Array indexing by string will create an AttrDelegate that enables a convenient shorthand for adding and
retrieving values from the spec:

2.6.

Image Specification: ImageSpec 31

OpenimagelO, Release 2.3.9

i. Assigning to the delegate adds a metadata attribute:

ImageSpec spec;

spec["foo"] = 42; // int

spec["pi"] = float (M_PI); // float
spec["oiio:ColorSpace"] = "sRGB"; // string
spec["cameratoworld"] = Imath::Matrix44(...); // matrix

Be very careful, the attribute’s type will be implied by the C++ type of what you assign.

ii. String data may be retrieved directly, and for other types, the delegate supports a get<T>() that re-
trieves an item of type T:

std::string colorspace = spec["oiio:ColorSpace"];
int dither = spec["oiio:dither"].get<int>();

This was added in version 2.1.

Public Static Functions

static inline void auto_stride (stride_t &xstride, stride_t &ystride, stride_t &zstride, stride_t
channelsize, int nchannels, int width, int height) noexcept
Adjust the stride values, if set to AutoStride, to be the right sizes for contiguous data with the given format,

channels, width, height.

static inline void auto_stride (stride_t &xstride, stride_t &ystride, stride_t &zstride, TypeDesc
format, int nchannels, int width, int height) noexcept
Adjust the stride values, if set to AutoStride, to be the right sizes for contiguous data with the given format,

channels, width, height.

static inline void auto_stride (stride_t &xstride, TypeDesc format, int nchannels) noexcept
Adjust xstride, if set to AutoStride, to be the right size for contiguous data with the given format and
channels.

static std::string metadata_val (const ParamValue &p, bool human = false)
For a given parameter p, format the value nicely as a string. If human is true, use especially human-
readable explanations (units, or decoding of values) for certain known metadata.

2.7 “Deep” pixel data: DeepData

class OIIO: :DeepData
A DeepDat a holds the contents of an image of ““deep” pixels (multiple depth samples per pixel).

32 Chapter 2. Image I/0 API Helper Classes

OpenimagelO, Release 2.3.9

Public Functions

DeepData ()
Construct an empty DeepData.

DeepData (const /mageSpec &spec)
Construct and init from an /mageSpec.

DeepData (const DeepData &d)
Copy constructor.

const DeepData &operator= (const DeepData &d)
Copy assignment.

void clear ()
Reset the DeepData to be equivalent to its empty initial state.

void free ()
In addition to performing the tasks of clear (), also ensure that all allocated memory has been truly
freed.

void init (int64_t npix, int nchan, cspan<TypeDesc> channeltypes, cspan<std::string> channelnames)
Initialize the DeepDat a with the specified number of pixels, channels, channel types, and channel names,
and allocate memory for all the data.

void init (const ImageSpec &spec)
Initialize the DeepData based on the TmageSpec’s total number of pixels, number and types of chan-
nels. At this stage, all pixels are assumed to have 0 samples, and no sample data is allocated.

bool initialized () const
Is the DeepData initialized?

bool allocated () const
Has the DeepData fully allocated? If no, it is still very inexpensive to call sez_capacity().

int64_t pixels () const
Retrieve the total number of pixels.

int channels () const
Retrieve the number of channels.

string_view channelname (int ¢) const
Return the name of channel c.

TypeDesc channeltype (int c) const
Retrieve the data type of channel c.

size_t channelsize (intc) const
Return the size (in bytes) of one sample datum of channel c.

size_t samplesize () const
Return the size (in bytes) for all channels of one sample.

int samples (int64_t pixel) const
Retrieve the number of samples for the given pixel index.

void set_samples (int64_t pixel, int samps)
Set the number of samples for the given pixel. This must be called after init().

void set_all_samples (cspan<unsigned int> samples)
Set the number of samples for all pixels. The samples.size() is required to match pixels().

2.7. “Deep” pixel data: DeepData 33

OpenimagelO, Release 2.3.9

void set_capacity (intb4_t pixel, int samps)
Set the capacity of samples for the given pixel. This must be called after init().

int capacity (int64_t pixel) const
Retrieve the capacity (number of allocated samples) for the given pixel index.

void insert_samples (int64_t pixel, int samplepos, intn=1)
Insert n samples of the specified pixel, betinning at the sample position index. After insertion, the new
samples will have uninitialized values.

void erase_samples (int64_t pixel, int samplepos, intn=1)
Erase n samples of the specified pixel, betinning at the sample position index.

float deep_value (int64_t pixel, int channel, int sample) const
Retrieve the value of the given pixel, channel, and sample index, castto a float.

uint32_t deep_value_uint (int64_t pixel, int channel, int sample) const
Retrieve the value of the given pixel, channel, and sample index, cast to a uint32.

void set_deep_value (int64_t pixel, int channel, int sample, float value)
Set the value of the given pixel, channel, and sample index, for floating-point channels.

void set_deep_value (intb4_t pixel, int channel, int sample, uint32_t value)
Set the value of the given pixel, channel, and sample index, for integer channels.

void *data_ptr (intb4_t pixel, int channel, int sample)
Retrieve the pointer to a given pixel/channel/sample, or NULL if there are no samples for that pixel. Use
with care, and note that calls to insert_samples and erase_samples can invalidate pointers returned by prior
calls to data_ptr.

void get_pointers (std::vector<void*> &pointers) const
Fill in the vector with pointers to the start of the first channel for each pixel.

bool copy_deep_sample (int64_t pixel, int sample, const DeepData &src, intb4_t srcpixel, int src-

sample)
Copy a deep sample from src to this DeepData. They must have the same channel layout. Return t rue

if ok, false if the operation could not be performed.

bool copy_deep_pixel (int64_t pixel, const DeepData &src, int64_t srcpixel)
Copy an entire deep pixel from src to this DeepData, completely replacing any pixel data for that
pixel. They must have the same channel layout. Return t rue if ok, false if the operation could not be
performed.

bool split (int64_t pixel, float depth)
Split all samples of that pixel at the given depth zsplit. Samples that span z (i.e. z < zsplit < zback) will
be split into two samples with depth ranges [z,zsplit] and [zsplit,zback] with appropriate changes to their
color and alpha values. Samples not spanning zsplit will remain intact. This operation will have no effect
if there are not Z and Zback channels present. Return true if any splits occurred, false if the pixel was not
modified.

void sort (int64_t pixel)
Sort the samples of the pixel by their Z depth.

void merge_overlaps (intb4_t pixel)
Merge any adjacent samples in the pixel that exactly overlap in z range. This is only useful if the pixel has
previously been split at all sample starts and ends, and sorted by Z. Note that this may change the number
of samples in the pixel.

void merge_deep_pixels (intb4_t pixel, const DeepData &src, int srcpixel)
Merge the samples of src’s pixel into this DeepData’s pixel. Return t rue if ok, false if the operation
could not be performed.

34

Chapter 2. Image I/O API Helper Classes

OpenimagelO, Release 2.3.9

float opaque_z (int64_t pixel) const
Return the z depth at which the pixel reaches full opacity.

void occlusion_cull (int64_t pixel)
Remove any samples hidden behind opaque samples.

2.8 Global Attributes

These helper functions are not part of any other OpenlmagelO class, they just exist in the OpenlmagelO namespace
as general utilities. (See Miscellaneous Utilities for the corresponding Python bindings.)

bool OIIO: :attribute (string_view name, TypeDesc type, const void *val)
OIIO::attribute () sets an global attribute (i.e., a property or option) of OpenlmagelO. The name desig-
nates the name of the attribute, t ype describes the type of data, and val is a pointer to memory containing the
new value for the attribute.

If the name is known, valid attribute that matches the type specified, the attribute will be set to the new value
and attribute () will return true. If name is not recognized, or if the types do not match (e.g., type is
TypeFloat but the named attribute is a string), the attribute will not be modified, and attribute () will
return false.

The following are the recognized attributes:

* string options

This catch-all is simply a comma-separated list of name=value settings of named options, which will be
parsed and individually set. For example,

OIIO::attribute ("options", "threads=4,log_times=1");

Note that if an option takes a string value that must itself contain a comma, it is permissible to enclose the
value in either ‘single’ or “double” quotes.

e int threads

How many threads to use for operations that can be sped up by being multithreaded. (Examples: simul-
taneous format conversions of multiple scanlines read together, or many ImageBufAlgo operations.) The
default is 0, meaning to use the full available hardware concurrency detected.

Situations where the main application logic is essentially single threaded (i.e., one top-level call into OIIO
at a time) should leave this at the default value, or some reasonable number of cores, thus allowing lots of
threads to fill the cores when OIIO has big tasks to complete. But situations where you have many threads
at the application level, each of which is expected to be making separate OIIO calls simultaneously, should
set this to 1, thus having each calling thread do its own work inside of OIIO rather than spawning new
threads with a high overall “fan out.””

e int exr_threads

Sets the internal OpenEXR thread pool size. The default is to use as many threads as the amount of
hardware concurrency detected. Note that this is separate from the OIIO "threads" attribute.

2.8. Global Attributes 35

OpenimagelO, Release 2.3.9

string font_searchpath

Colon-separated (or semicolon-separated) list of directories to search if fonts are needed. (Such as for
ImageBufAlgo: :render_text ().)

string plugin_searchpath

Colon-separated (or semicolon-separated) list of directories to search for dynamically-loaded format plu-
gins.

int read_chunk

When performing a read_image (), this is the number of scanlines it will attempt to read at a time
(some formats are more efficient when reading and decoding multiple scanlines). The default is 256. The
special value of O indicates that it should try to read the whole image if possible.

float[] missingcolor, string missingcolor

This attribute may either be an array of float values, or a string containing a comma-separated list of
the values. Setting this option globally is equivalent to always passing an ImageInput open-with-
configuration hint "oiio:missingcolor" with the value.

When set, it gives some ImageInput readers the option of ignoring any missing tiles or scanlines in
the file, and instead of treating the read failure of an individual tile as a full error, will interpret is as an
intentionally missing tile and proceed by simply filling in the missing pixels with the color specified. If the
first element is negative, it will use the absolute value, but draw alternating diagonal stripes of the color.
For example,

float missing(4] = { -1.0, 0.0, 0.0, 0.0 }; // striped red
OIIO::attribute ("missingcolor", TypeDesc("float[4]"), &missing);

Note that only some file formats support files with missing tiles or scanlines, and this is only taken as a hint.
Please see chap-bundledplugins_ for details on which formats accept a "missingcolor" configuration
hint.

int debug

When nonzero, various debug messages may be printed. The default is O for release builds, 1 for DEBUG
builds (values > 1 are for OIIO developers to print even more debugging information), This attribute but
also may be overridden by the OPENIMAGEIO_DEBUG environment variable.

int tiff:half

When nonzero, allows TIFF to write half pixel data. N.B. Most apps may not read these correctly, but
OIIO will. That’s why the default is not to support it.

int openexr:core

When nonzero, use the new “OpenEXR core C library” when available, for OpenEXR >= 3.1. This is
experimental, and currently defaults to 0.

int log_times

When the "1og_times" attribute is nonzero, ImageBufAlgo functions are instrumented to record the
number of times they were called and the total amount of time spent executing them. It can be overridden
by environment variable OPENIMAGEIO_LOG_TIMES. The totals will be recorded and can be retrieved
asastringbyusing OTIO: :getattribute ("timing_report", ...).Additionally,if the value
is 2 or more, the timing report will be printed to st dout upon application exit (not advised in contexts
where it isn’t ok to print to the terminal via stdout, such as GUI apps or libraries).

When enabled, there is a slight runtime performance cost due to checking the time at the start and end
of each of those function calls, and the locking and recording of the data structure that holds the log
information. When the 1og_t imes attribute is disabled, there is no additional performance cost.

36

Chapter 2. Image I/O API Helper Classes

OpenimagelO, Release 2.3.9

bool OITI0: :attribute (string_view name, int val)

bool OIT0: :attribute (string_view name, float val)

bool OIIO: :attribute (string_view name, string_view val)
Shortcuts for setting an attribute to a single int, float, or string.

bool OIT0: :getattribute (string_view name, TypeDesc type, void *val)
Get the named global attribute of OpenlmagelO, store it in *val. Return t rue if found and it was compatible
with the type specified, otherwise return false and do not modify the contents of xval. It is up to the caller
to ensure that val points to the right kind and size of storage for the given type.

In addition to being able to retrieve all the attributes that are documented as settable by the
OIIO::attribute () call, getattribute () can also retrieve the following read-only attributes:

L]

string format_list
string input_format_list
string output_format_list

A comma-separated list of all the names of, respectively, all supported image formats, all formats accepted
as inputs, and all formats accepted as outputs.

string extension_list

For each format, the format name, followed by a colon, followed by a comma-separated list of all exten-
sions that are presumed to be used for that format. Semicolons separate the lists for formats. For example,

"tiff:tif; jpeg: jpg, jpeg;openexr:exr"

string library_list

For each format that uses a dependent library, the format name, followed by a colon, followed by the name
and version of the dependency. Semicolons separate the lists for formats. For example,

"tiff:LIBTIFF 4.0.4;gif:gif_1lib 4.2.3;o0openexr:0penEXR 2.2.0"

string “timing_report” A string containing the report of all the log_times.
string hw:simd
string oiio:simd (read-only)

A comma-separated list of hardware CPU features for SIMD (and some other things). The "oiio:simd"
attribute is similarly a list of which features this build of OIIO was compiled to support.

This was added in OpenlmagelO 1.8.
float resident_memory_used_ MB

This read-only attribute can be used for debugging purposes to report the approximate process memory
used (resident) by the application, in MB.

string timing_report

Retrieving this attribute returns the timing report generated by the 1og_timing attribute (if it was en-
abled). The report is sorted alphabetically and for each named instrumentation region, prints the number
of times it executed, the total runtime, and the average per call, like this:

2.8. Global Attributes 37

OpenimagelO, Release 2.3.9

IBA::computePixelStats 2 2.69ms (avg 1.34ms)
IBA: :make_texture 1 74.05ms (avg 74.05ms)
IBA: :mul 8 2.42ms (avg 0.30ms)
IBA: :over 10 23.82ms (avg 2.38ms)
IBA: :resize 20 0.24s (avg 12.18ms)
IBA::zero 8 0.66ms (avg 0.08ms)

bool getattribute (string_view name, int &val)
bool getattribute (string_view name, float &val)
bool getattribute (string_view name, char **val)

bool getattribute (string_view name, std::string &val)
Specialized versions of getattribute () in which the data type is implied by the type of the argument (for
single int, float, or string). Two string versions exist: one that retrieves it as a std: : st ring and another that
retrieves it as a char . In all cases, the return value is t rue if the attribute is found and the requested data
type conversion was legal.

EXAMPLES:

int threads;

OIIO::getattribute ("threads", &threads);
std::string path;

OIIO::getattribute ("plugin searchpath", é&path);

int get_int_attribute (string_view name, int defaultvalue = 0)
float get_float_attribute (string_view name, float defaultvalue = 0)
string_view get_string_attribute (string_view name, string_view defaultvalue ="")

Specialized versions of getattribute () for common types, in which the data is returned directly,
and a supplied default value is returned if the attribute was not found.

EXAMPLES:

int threads = OIIO::getattribute ("threads", 0);
string_view path = OIIO::getattribute ("plugin_searchpath");

2.9 Miscellaneous Utilities

These helper functions are not part of any other OpenlmagelO class, they just exist in the OIIO namespace as general
utilities. (See Miscellaneous Utilities for the corresponding Python bindings.)

int OTIO: :openimageio_version ()
Returns a numeric value for the version of OpenlmagelO, 10000 for each major version, 100 for each minor
version, 1 for each patch. For example, OpenlmagelO 1.2.3 would return a value of 10203. One example of
how this is useful is for plugins to query the version to be sure they are linked against an adequate version of the
library.

bool 0I10: :has_error ()
Is there a pending global error message waiting to be retrieved?

std::string OII0: : geterror (bool clear = true)
Returns any error string describing what went wrong if ImageInput::create() or
ImageOutput::create () failed (since in such cases, the Imagelnput or ImageOutput itself does
not exist to have its own geterror () function called). This function returns the last error for this particular
thread, and clear the pending error message unless clear is false; separate threads will not clobber each
other’s global error messages.

38 Chapter 2. Image I/0 API Helper Classes

OpenimagelO, Release 2.3.9

void OII0: :declare_imageio_format (const std:string &format_name, Imagelnput::Creator
input_creator, const char **input_extensions, Ima-
geOutput::Creator output_creator, const char **out-

put_extensions, const char *lib_version)
Register the input and output ‘create’ routines and list of file extensions for a particular format.

bool OII0: :is_imageio_format_name (siring_view name)
Is name one of the known format names?

inline std::map<std::string, std::vector<std::string>> OIIO: :get_extension_map ()
Utility: Parse the “extension_list” attribute into a std::map string keys are the names of all the file formats OIIO
knows how to read, and whose values are vectors of strings of the file extensions associated with the file format.
(Added in OIIO 2.2.13.)

2.10 Environment variables

There are a few special environment variables that can be used to control OpenlmagelO at times that it is not convenient
to set options individually from inside the source code.

OPENIMAGEIO_FONTS

A searchpath for finding fonts (for example, when using by ImageBufAlgo: :render_text or

[73% 1) 6,9

oiiotool —--text). This may contain a list of directories separated by “:” or
OPENIMAGEIO_OPTIONS
Allows you to seed the global OpenlmagelO-wide options.

The value of the environment variable should be a comma-separated list of name=value settings. If a
value is a string that itself needs to contain commas, it may be enclosed in single or double quotes.

Upon startup, the contents of this environment variable will be passed to a call to:

OIIO::attribute ("options", wvalue);

OPENIMAGEIO_IMAGECACHE_OPTIONS
Allows you to seed the options for any ImageCache created.

The value of the environment variable should be a comma-separated list of name=value settings. If a
value is a string that itself needs to contain commas, it may be enclosed in single or double quotes.

Upon creation of any ImageCache, the contents of this environment variable will be passed to a call to:

imagecache->attribute ("options", wvalue);

OPENIMAGEIO_TEXTURE_OPTIONS
Allows you to seed the options for any TextureSystem created.

The value of the environment variable should be a comma-separated list of name=value settings. If a
value is a string that itself needs to contain commas, it may be enclosed in single or double quotes.

Upon creation of any TextureSystem, the contents of this environment variable will be passed to a call to:

2.10. Environment variables 39

OpenimagelO, Release 2.3.9

texturesys—->attribute ("options", wvalue);

OPENIMAGEIO_THREADS, CUE_THREADS

Either of these sets the default number of threads that OpenlmagelO will use for its thread pool. If both
are set, OPENIMAGEIO_THREADS will take precedence. If neither is set, the default will be 0, which
means to use as many threads as there are physical cores on the machine.

40 Chapter 2. Image I/O API Helper Classes

CHAPTER
THREE

IMAGEOUTPUT: WRITING IMAGES

3.1 Image Output Made Simple

Here is the simplest sequence required to write the pixels of a 2D image to a file:

#include <OpenImageIO/imageio.h>
using namespace OIIO;

const char xfilename = "foo.jpg";

const int xres = 640, yres = 480;

const int channels = 3; // RGB

unsigned char pixels|[xres*yresxchannels];

std: :unique_ptr<ImageOutput> out = ImageOutput
if (! out)

return;
ImageSpec spec (xres, yres, channels, TypeDesc
out->open (filename, spec);
out->write_image (TypeDesc::UINT8, pixels);
out->close ();

::create (filename);

: :UINTS) ;

This little bit of code does a surprising amount of useful work:

 Search for an ImagelO plugin that is capable of writing the file foo. jpg), deducing the format from the file
extension. When it finds such a plugin, it creates a subclass instance of ImageOutput that writes the right

kind of file format.

std: :unique_ptr<ImageOutput> out = ImageOutput::create (filename);

* Open the file, write the correct headers, and in all other important ways prepare a file with the given dimensions
(640 x 480), number of color channels (3), and data format (unsigned 8-bit integer).

ImageSpec spec (xres, yres, channels, TypeDesc::UINT3);
out->open (filename, spec);

* Write the entire image, hiding all details of the encoding of image data in the file, whether the file is scanline-
or tile-based, or what is the native format of data in the file (in this case, our in-memory data is unsigned 8-bit
and we’ve requested the same format for disk storage, but if they had been different, write_image () would
do all the conversions for us).

out->write_image (TypeDesc::UINT8, &pixels);

¢ Close the file.

41

OpenimagelO, Release 2.3.9

out—->close ();

What happens when the file format doesn’t support the spec?

The open () call will fail (returning an empty pointer and set an appropriate error message) if the output format
cannot accommodate what is requested by the ImageSpec. This includes:

+ Dimensions (width, height, or number of channels) exceeding the limits supported by the file format.'
* Volumetric (depth > 1) if the format does not support volumetric data.

* Tile size >1 if the format does not support tiles.

* Multiple subimages or MIP levels if not supported by the format.

However, several other mismatches between requested ImageSpec and file format capabilities will be silently ig-
nored, allowing open () to succeed:

« If the pixel data format is not supported (for example, a request for half pixels when writing a JPEG/JFIF
file), the format writer may substitute another data format (generally, whichever commonly-used data format
supported by the file type will result in the least reduction of precision or range).

* If the ImageSpec requests different per-channel data formats, but the format supports only a single format for
all channels, it may just choose the most precise format requested and use it for all channels.

o If the file format does not support arbitrarily-named channels, the channel names may be lost when saving the
file.

* Any other metadata in the Image Spec may be summarily dropped if not supported by the file format.

3.2 Advanced Image Output

Let’s walk through many of the most common things you might want to do, but that are more complex than the simple
example above.

3.2.1 Writing individual scanlines, tiles, and rectangles
The simple example of Section /mage Output Made Simple wrote an entire image with one call. But sometimes you

are generating output a little at a time and do not wish to retain the entire image in memory until it is time to write the
file. OpenlmagelO allows you to write images one scanline at a time, one tile at a time, or by individual rectangles.

Writing individual scanlines

Individual scanlines may be written using the writescanline () API call:

unsigned char scanline[xres*channels];
out->open (filename, spec);
int z = 0; // Always zero for 2D images
for (int y = 0; vy < yres; ++y) {
generate data in scanline[0..xres*channels-1]
out->write_scanline (y, z, TypeDesc::UINT8, scanline);

(continues on next page)

! One exception to the rule about number of channels is that a file format that supports only RGB, but not alpha, is permitted to silently drop the
alpha channel without considering that to be an error.

42 Chapter 3. ImageOutput: Writing Images

OpenimagelO, Release 2.3.9

(continued from previous page)

out—>close ();

The first two arguments to writescanline () specify which scanline is being written by its vertical (y) scanline
number (beginning with 0) and, for volume images, its slice (z) number (the slice number should be 0 for 2D non-
volume images). This is followed by a TypeDesc describing the data you are supplying, and a pointer to the pixel
data itself. Additional optional arguments describe the data stride, which can be ignored for contiguous data (use of
strides is explained in Section Data Strides).

All ImageOutput implementations will accept scanlines in strict order (starting with scanline O, then 1, up to
yres—1, without skipping any). See Section Random access and repeated transmission of pixels for details on out-
of-order or repeated scanlines.

The full description of the writescanline () function may be found in Section /mageOutput Class Reference.

Writing individual tiles

Not all image formats (and therefore not all ImageOutput implementations) support tiled images. If the format
does not support tiles, then writetile () will fail. An application using OpenlmagelO should gracefully handle
the case that tiled output is not available for the chosen format.

Once you create () an ImageOutput, you can ask if it is capable of writing a tiled image by using the
supports ("tiles") query:

std: :unique_ptr<ImageOutput> out = ImageOutput::create (filename);
if (! out->supports ("tiles")) {
// Tiles are not supported}

Assuming that the TmageOutput supports tiled images, you need to specifically request a tiled image when you
open () the file. This is done by setting the tile size in the ImageSpec passed to open (). If the tile dimensions
are not set, they will default to zero, which indicates that scanline output should be used rather than tiled output.

int tilesize = 64;

ImageSpec spec (xres, yres, channels, TypeDesc::UINT38);
spec.tile_width = tilesize;

spec.tile_height = tilesize;

out->open (filename, spec);

In this example, we have used square tiles (the same number of pixels horizontally and vertically), but this is not a
requirement of OpenlmagelO. However, it is possible that some image formats may only support square tiles, or only
certain tile sizes (such as restricting tile sizes to powers of two). Such restrictions should be documented by each
individual plugin.

unsigned char tile[tilesizextilesizexchannels];

int z = 0; // Always zero for 2D images
for (int yv = 0; vy < yres; vy += tilesize) {
for (int x = 0; x < xres; x += tilesize) {

generate data in tile[]
out->write_tile (x, vy, z, TypeDesc::UINT8, tile);

}

out—>close ();

3.2. Advanced Image Output 43

OpenimagelO, Release 2.3.9

The first three arguments to writetile () specify which tile is being written by the pixel coordinates of any pixel
contained in the tile: x (column), y (scanline), and z (slice, which should always be 0 for 2D non-volume images).
This is followed by a TypeDesc describing the data you are supplying, and a pointer to the tile’s pixel data itself,
which should be ordered by increasing slice, increasing scanline within each slice, and increasing column within each
scanline. Additional optional arguments describe the data stride, which can be ignored for contiguous data (use of
strides is explained in Section Data Strides).

All ImageOutput implementations that support tiles will accept tiles in strict order of increasing y rows, and within
each row, increasing x column, without missing any tiles. See

The full description of the writetile () function may be found in Section ImageOutput Class Reference.

Writing arbitrary rectangles

Some ImageOutput implementations — such as those implementing an interactive image display, but probably
not any that are outputting directly to a file — may allow you to send arbitrary rectangular pixel regions. Once
you create () an ImageOutput, you can ask if it is capable of accepting arbitrary rectangles by using the
supports ("rectangles") query:

std: :unique_ptr<ImageOutput> out = ImageOutput::create (filename);
if (! out->supports ("rectangles")) {
// Rectangles are not supported

If rectangular regions are supported, they may be sent using the write_rectangle () APIcall:

unsigned int rect[...];
generate data in rect/[]
out->write_rectangle (xbegin, xend, ybegin, yend, =zbegin, zend,
TypeDesc: :UINT8, rect);

The first six arguments to write_rectangle () specify the region of pixels that is being transmitted by supplying
the minimum and one-past-maximum pixel indices in x (column), y (scanline), and z (slice, always O for 2D non-
volume images).

Note: OpenlmagelO nearly always follows the C++ STL convention of specifying ranges as [begin, end), that
is, begin, begin+l, ..., end-1.

The total number of pixels being transmitted is therefore:

(xend-xbegin) % (yend-ybegin) =* (zend-zbegin)

This is followed by a TypeDesc describing the data you are supplying, and a pointer to the rectangle’s pixel data
itself, which should be ordered by increasing slice, increasing scanline within each slice, and increasing column within
each scanline. Additional optional arguments describe the data stride, which can be ignored for contiguous data (use
of strides is explained in Section Data Strides).

44 Chapter 3. ImageOutput: Writing Images

OpenimagelO, Release 2.3.9

3.2.2 Converting pixel data types

The code examples of the previous sections all assumed that your internal pixel data is stored as unsigned 8-bit integers
(i.e., 0-255 range). But OpenlmagelO is significantly more flexible.

You may request that the output image pixels be stored in any of several data types. This is done by setting the
format field of the ImageSpec prior to calling open. You can do this upon construction of the ImageSpec, as
in the following example that requests a spec that stores pixel values as 16-bit unsigned integers:

ImageSpec spec (xres, yres, channels, TypeDesc::UINT16);

Or, for an ImageSpec that has already been constructed, you may reset its format using the set_format ()
method.

ImageSpec spec (...);
spec.set_format (TypeDesc::UINT16);

Note that resetting the pixel data type must be done before passing the spec to open (), or it will have no effect on
the file.

Individual file formats, and therefore ImageOutput implementations, may only support a subset of the pixel data
types understood by the OpenImagelO library. Each ImageOutput plugin implementation should document which
data formats it supports. An individual ImageOutput implementation is expected to always succeed, but if the file
format does not support the requested pixel data type, it is expected to choose a data type that is supported, usually the
data type that best preserves the precision and range of the originally-requested data type.

The conversion from floating-point formats to integer formats (or from higher to lower integer, which is done by first
converting to float) is always done by rescaling the value so that 0.0 maps to integer 0 and 1.0 to the maximum value
representable by the integer type, then rounded to an integer value for final output. Here is the code that implements
this transformation (T is the final output integer type):

float value = quant_max * input;
T output = (T) clamp ((int) (value + 0.5), quant_min, quant_max);

Quantization limits for each integer type is as follows:

Data Format | min max
UINTS 0 255

INTS -128 127
UINT16 0 65535
INT16 -32768 32767
UINT 0 4294967295
INT -2147483648 | 2147483647

Note that the default is to use the entire positive range of each integer type to represent the floating-point (0.0 - 1.0)
range. Floating-point types do not attempt to remap values, and do not clamp (except to their full floating-point range).

It is not required that the pixel data passed to writeimage (), writescanline (), writetile(), or
write_rectangle () actually be in the same data type as that requested as the native pixel data type of the file.
You can fully mix and match data you pass to the various “write” routines and OpenlmagelO will automatically con-
vert from the internal format to the native file format. For example, the following code will open a TIFF file that stores
pixel data as 16-bit unsigned integers (values ranging from 0 to 65535), compute internal pixel values as floating-point
values, with writeimage () performing the conversion automatically:

std: :unique_ptr<ImageOutput> out = ImageOutput::create ("myfile.tif");
ImageSpec spec (xres, yres, channels, TypeDesc::UINT16);

(continues on next page)

3.2. Advanced Image Output 45

OpenimagelO, Release 2.3.9

(continued from previous page)

out->open (filename, spec);
float pixels [xresxyres*channels];

out->write_image (TypeDesc::FLOAT, pixels);

Note that writescanline (), writetile (), and write_rectangle () have a parameter that works in a
corresponding manner.

3.2.3 Data Strides

In the preceeding examples, we have assumed that the block of data being passed to the “write” functions are contigu-
ous, that is:

¢ each pixel in memory consists of a number of data values equal to the declared number of channels that are
being written to the file;

* successive column pixels within a row directly follow each other in memory, with the first channel of pixel x
immediately following last channel of pixel x—1 of the same row;

 for whole images, tiles or rectangles, the data for each row immediately follows the previous one in memory
(the first pixel of row y immediately follows the last column of row y—1);

* for 3D volumetric images, the first pixel of slice z immediately follows the last pixel of of slice z—1.

Please note that this implies that data passed to writetile () be contiguous in the shape of a single tile (not just
an offset into a whole image worth of pixels), and that data passed to write_rectangle () be contiguous in the
dimensions of the rectangle.

The writescanline () function takes an optional xstride argument, and the writeimage (),
writetile(), and write_rectangle () functions take optional xstride, ystride, and zstride val-
ues that describe the distance, in bytes, between successive pixel columns, rows, and slices, respectively, of the data
you are passing. For any of these values that are not supplied, or are given as the special constant AutoStride,
contiguity will be assumed.

By passing different stride values, you can achieve some surprisingly flexible functionality. A few representative
examples follow:

* Flip an image vertically upon writing, by using negative y stride:

unsigned char pixels[xresxyresxchannels];
int scanlinesize = xres * channels »* sizeof (pixels[0]);

out->write_image (TypeDesc::UINTS,
(char *)pixels+ (yres-1)=+scanlinesize, // offset to last

AutoStride, // default x stride
-scanlinesize, // special y stride
AutoStride); // default z stride

* Write a tile that is embedded within a whole image of pixel data, rather than having a one-tile-only memory
layout:

unsigned char pixels[xresxyres*channels];
int pixelsize = channels » sizeof (pixels[0]);
int scanlinesize = xres x pixelsize;

out->write_tile (x, vy, 0, TypeDesc::UINTS,

(continues on next page)

46 Chapter 3. ImageOutput: Writing Images

OpenimagelO, Release 2.3.9

(continued from previous page)

pixelsize,
scanlinesize) ;

(char *)pixels + y*scanlinesize + x*pixelsize,

* Write only a subset of channels to disk. In this example, our internal data layout consists of 4 channels, but we

write just channel 3 to disk as a one-channel image:

// In-memory representation is 4 channel
const int xres = 640, yres = 480;

const int channels = 4; // RGBA

const int channelsize = sizeof (unsigned char);
unsigned char pixels[xresxyresxchannels];

// File representation is 1 channel
std: :unique_ptr<ImageOutput> out =
ImageSpec spec (xres, yres, 1,
out->open (filename, spec);

// Use strides to write out a one-channel
out->write_image (TypeDesc::UINTS,
(char »)pixels+3+channelsize,
channels*channelsize,
AutoStride,
AutoStride);

ImageOutput: :create

TypeDesc: :UINTS) ;

(filename) ;

"slice" of the image

// offset to chan 3
// 4 channel x stride
// default y stride
// default z stride

Please consult Section /mageOutput Class Reference for detailed descriptions of the stride parameters to each “write”
function.

3.2.4 Writing a crop window or overscan region

The ImageSpec fields width, height, and depth describe the dimensions of the actual pixel data.

At times, it may be useful to also describe an abstract full or display image window, whose position and size may not
correspond exactly to the data pixels. For example, a pixel data window that is a subset of the full display window
might indicate a crop window; a pixel data window that is a superset of the full display window might indicate overscan
regions (pixels defined outside the eventual viewport).

The ImageSpec fields full_width, full_height, and full_depth describe the dimensions of the full
display window, and full_x, full_y, full_z describe its origin (upper left corner). The fields %, y, z describe
the origin (upper left corner) of the pixel data.

These fields collectively describe an abstract full display image ranging from [full_ x

full_x+full_width-1] horizontally, [full_y ... full_y+full_height-1] vertically, and [full_z ...

full_z+full_depth-1]in depth (if it is a 3D volume), and actual pixel data over the pixel coordinate range [x
. x+width-1] horizontally, [y ... y+height—-1] vertically, and [z ... z+depth-1]in depth (if it is a volume).

Not all image file formats have a way to describe display windows. An ImageOutput implementation that cannot
express display windows will always write out the width » height pixel data, may upon writing lose information
about offsets or crop windows.

Here is a code example that opens an image file that will contain a 32x32 pixel crop window within an abstract 640
x 480 full size image. Notice that the pixel indices (column, scanline, slice) passed to the “write” functions are the
coordinates relative to the full image, not relative to the crop widow, but the data pointer passed to the “write” functions
should point to the beginning of the actual pixel data being passed (not the the hypothetical start of the full data, if it
was all present).

3.2. Advanced Image Output 47

OpenimagelO, Release 2.3.9

int fullwidth = 640, fulllength = 480; // Full display image size

int cropwidth = 16, croplength = 16; // Crop window size

int xorigin = 32, yorigin = 128; // Crop window position

unsigned char pixels [cropwidth * croplength x channels]; // Crop size!

std: :unique_ptr<ImageOutput> out = ImageOutput::create (filename);
ImageSpec spec (cropwidth, croplength, channels, TypeDesc::UINTS8) ;
spec.full_x = 0;

spec.full_y = 0;

spec.full_width = fullwidth;

spec.full_length = fulllength;

spec.x = xorigin;

spec.y = yorigin;

out->open (filename, spec);

int z = 0; // Always zero for 2D images
for (int y = yorigin; vy < yorigin+croplength; ++y) {
out->write_scanline (y, z, TypeDesc::UINTS,
(y-yorigin) xcropwidthxchannels) ;
}

out->close ();

3.2.5 Writing metadata

The ImageSpec passed to open () can specify all the common required properties that describe an image: data
format, dimensions, number of channels, tiling. However, there may be a variety of additional mefadata that should
be carried along with the image or saved in the file.

Note: Metadata refers to data about data, in this case, data about the image that goes beyond the pixel values and
description thereof.

The remainder of this section explains how to store additional metadata in the ImageSpec. It is up to the
ImageOutput to store these in the file, if indeed the file format is able to accept the data. Individual ImageOutput
implementations should document which metadata they respect.

Channel names

In addition to specifying the number of color channels, it is also possible to name those channels. Only a few
ImageOutput implementations have a way of saving this in the file, but some do, so you may as well do it if
you have information about what the channels represent.

By convention, channel names for red, green, blue, and alpha (or a main image) should be named "R", "G", "B",
and "A", respectively. Beyond this guideline, however, you can use any names you want.

The ImageSpec has a vector of strings called channelnames. Upon construction, it starts out with reasonable
default values. If you use it at all, you should make sure that it contains the same number of strings as the number of
color channels in your image. Here is an example:

int channels = 4;
ImageSpec spec (width, length, channels, TypeDesc::UINTS8);
spec.channelnames.clear ();

spec.channelnames.push_back ("R")
spec.channelnames.push_back ("G")

’
’

(continues on next page)

48 Chapter 3. ImageOutput: Writing Images

OpenimagelO, Release 2.3.9

(continued from previous page)

spec.channelnames.push_back ("B");
spec.channelnames.push_back ("A");

Here is another example in which custom channel names are used to label the channels in an 8-channel image contain-
ing beauty pass RGB, per-channel opacity, and texture s,t coordinates for each pixel.

int channels = 8;
ImageSpec spec (width, length, channels, TypeDesc::UINTS8);
spec.channelnames.clear ();
spec.channelnames.push_back (
spec.channelnames.push_back (
spec.channelnames.push_back (
spec.channelnames.push_back ("opacityR");
spec.channelnames.push_back ("opacityG");
()
(!
(

HRH) ,.
HGU) ,.
B™);

")

spec.channelnames.push_back ("opacityB"
spec.channelnames.push_back ("texture_ s"
spec.channelnames.push_back

’

)i
)

"texture_t"

The main advantage to naming color channels is that if you are saving to a file format that supports channel names,
then any application that uses OpenlmagelO to read the image back has the option to retain those names and use them
for helpful purposes. For example, the iv image viewer will display the channel names when viewing individual
channels or displaying numeric pixel values in “pixel view” mode.

Specially-designated channels

The ImageSpec contains two fields, alpha_channel and z_channel, which can be used to designate which
channel indices are used for alpha and z depth, if any. Upon construction, these are both set to —1, indicating that it
is not known which channels are alpha or depth. Here is an example of setting up a 5-channel output that represents
RGBAZ:

int channels = 5;

ImageSpec spec (width, length, channels, format);
spec.channelnames.clear();
spec.channelnames.push_back ("R")
spec.channelnames.push_back ("G")
spec.channelnames.push_back ("B");
spec.channelnames.push_back ("A")
spec.channelnames.push_back ("z")
spec.alpha_channel = 3;
spec.z_channel = 4;

There are advantages to designating the alpha and depth channels in this manner: Some file formats may require that
these channels be stored in a particular order, with a particular precision, or the ImageOutput may in some other
way need to know about these special channels.

3.2. Advanced Image Output 49

OpenimagelO, Release 2.3.9

Arbitrary metadata

For all other metadata that you wish to save in the file, you can attach the data to the ImageSpec using the
attribute () methods. These come in polymorphic varieties that allow you to attach an attribute name and a
value consisting of a single int, unsigned int, float, charx, or std: :string, as shown in the following
examples:

ImageSpec spec (...);
unsigned int u = 1;
spec.attribute ("Orientation", u);

float x = 72.0;

spec.attribute ("dotsize", f);
std::string s = "Fabulous image writer 1.0";
spec.attribute ("Software", s);

These are convenience routines for metadata that consist of a single value of one of these common types. For other data
types, or more complex arrangements, you can use the more general form of attribute (), which takes arguments
giving the name, type (as a TypeDesc), number of values (1 for a single value, >1 for an array), and then a pointer to
the data values. For example,

ImageSpec spec (...);

// Attach a 4x4 matrix to describe the camera coordinates
float mymatrix[16] = { ... };
spec.attribute ("worldtocamera", TypeMatrix, &mymatrix);

// Attach an array of two floats giving the CIE neutral color
float neutrall2] = { ... };
spec.attribute ("adoptedNeutral", TypeDesc(TypeDesc::FLOAT, 2), &neutral);

In general, most image file formats (and therefore most ImageOutput implementations) are aware of only a small
number of name/value pairs that they predefine and will recognize. Some file formats (OpenEXR, notably) do accept
arbitrary user data and save it in the image file. If an TmageOutput does not recognize your metadata and does not
support arbitrary metadata, that metadatum will be silently ignored and will not be saved with the file.

Each individual ImageOutput implementation should document the names, types, and meanings of all metadata
attributes that they understand.

Color space hints

We certainly hope that you are using only modern file formats that support high precision and extended range pixels
(such as OpenEXR) and keeping all your images in a linear color space. But you may have to work with file formats
that dictate the use of nonlinear color values. This is prevalent in formats that store pixels only as 8-bit values, since
256 values are not enough to linearly represent colors without banding artifacts in the dim values.

Since this can (and probably will) happen, we have a convention for explaining what color space your image pixels
are in. Each individual ImageOutput should document how it uses this (or not).

The ImageSpec: :extra_attribs field should store metadata that reveals the color space of the pixels you are
sending the ImageOutput (see Section Color information metadata for explanations of particular values).

The color space hints only describe color channels. You should always pass alpha, depth, or other non-color channels
with linear values.

50 Chapter 3. ImageOutput: Writing Images

OpenimagelO, Release 2.3.9

Here is a simple example of setting up the ImageSpec when you know that the pixel values you are writing are
linear:

ImageSpec spec (width, length, channels, format);
spec.attribute ("oiio:ColorSpace", "Linear");

If a particular ImageOutput implementation is required (by the rules of the file format it writes) to have pixels in
a particular color space, then it should try to convert the color values of your image to the right color space if it is
not already in that space. For example, JPEG images must be in SRGB space, so if you declare your pixels to be
"Linear", the JPEG ImageOutput will convert to sSRGB.

If you leave the "oiio:ColorSpace" unset, the values will not be transformed, since the plugin can’t be sure that
it’s not in the correct space to begin with.

3.2.6 Random access and repeated transmission of pixels

All ImageOutput implementations that support scanlines and tiles should write pixels in strict order of increasing z
slice, increasing y scanlines/rows within each slice, and increasing x column within each row. It is generally not safe
to skip scanlines or tiles, or transmit them out of order, unless the plugin specifically advertises that it supports random
access or rewrites, which may be queried using:

std: :unique_ptr<ImageOutput> out = ImageOutput::create (filename);
if (out-—>supports ("random_access"))

Similarly, you should assume the plugin will not correctly handle repeated transmissions of a scanline or tile that has
already been sent, unless it advertises that it supports rewrites, which may be queried using:

if (out->supports ("rewrite"))

3.2.7 Multi-image files

Some image file formats support storing multiple images within a single file. Given a created ImageOutput, you
can query whether multiple images may be stored in the file:

std: :unique_ptr<ImageOutput> out = ImageOutput::create (filename);
if (out->supports ("multiimage"))

Some image formats allow you to do the initial open () call without declaring the specifics of the subimages, and
simply append subimages as you go. You can detect this by checking

if (out->supports ("appendsubimage"))

In this case, all you have to do is, after writing all the pixels of one image but before calling close (), call open ()
again for the next subimage and pass AppendSubimage as the value for the mode argument (see Section /mageQOut-
put Class Reference for the full technical description of the arguments to open ()). The close () routine is called
just once, after all subimages are completed. Here is an example:

3.2. Advanced Image Output 51

OpenimagelO, Release 2.3.9

const char xfilename = "foo.tif";

int nsubimages; // assume this 1is set

ImageSpec specs(]; // assume these are set for each subimage
unsigned char xpixels[]; // assume a buffer for each subimage

// Create the ImageOutput
std: :unique_ptr<ImageOutput> out = ImageOutput::create (filename);

// Be sure we can support subimages

if (subimages > 1 &¢& (! out->supports ("multiimage™) ||
! out->supports ("appendsubimage"))) {
std::cerr << "Does not support appending of subimages\n";
return;

// Use Create mode for the first level.
ImageOutput : :OpenMode appendmode = ImageOutput::Create;

// Write the individual subimages

for (int s = 0; s < nsubimages; ++s) {
out—->open (filename, specs[s], appendmode) ;
out->write_image (TypeDesc::UINT8, pixels([s]);
// Use AppendSubimage mode for subsequent levels
appendmode = ImageOutput: :AppendSubimage;

}

out—->close ();

On the other hand, if out->supports ("appendsubimage™) returns false, then you must use a different
open () variety that allows you to declare the number of subimages and their specifications up front.

Below is an example of how to write a multi-subimage file, assuming that you know all the image specifications ahead
of time. This should be safe for any file format that supports multiple subimages, regardless of whether it supports
appending, and thus is the preferred method for writing subimages, assuming that you are able to know the number
and specification of the subimages at the time you first open the file.

const char xfilename = "foo.tif";

int nsubimages; // assume this is set

ImageSpec specs(]; // assume these are set for each subimage
unsigned char xpixels[]; // assume a buffer for each subimage

// Create the ImageOutput
std: :unique_ptr<ImageOutput> out = ImageOutput::create (filename);

// Be sure we can support subimages

if (subimages > 1 && ! out->supports ("multiimage")) {
std::cerr << "Cannot write multiple subimages\n";
return;

// Open and declare all subimages
out->open (filename, nsubimages, specs);

// Write the individual subimages
for (int s = 0; s < nsubimages; ++s) {
if (s > 0) // Not needed for the first, which is already open
out->open (filename, specs[s], Imagelnput::AppendSubimage);
out->write_image (TypeDesc::UINT8, pixels[s]);

(continues on next page)

52 Chapter 3. ImageOutput: Writing Images

OpenimagelO, Release 2.3.9

(continued from previous page)

}

out—->close ();

In both of these examples, we have used writeimage (), but of course writescanline (), writetile (),
and write_rectangle () work as you would expect, on the current subimage.

3.2.8 MIP-maps

Some image file formats support multiple copies of an image at successively lower resolutions (MIP-map levels, or an
“image pyramid”). Given a created ImageOutput, you can query whether MIP-maps may be stored in the file:

std: :unique_ptr<ImageOutput> out = ImageOutput::create (filename);
if (out->supports ("mipmap"))

If you are working with an ImageOutput that supports MIP-map levels, it is easy to write these lev-
els. After writing all the pixels of one MIP-map level, call open () again for the next MIP level and pass
ImageInput: :AppendMIPLevel as the value for the mode argument, and then write the pixels of the subse-
quent MIP level. (See Section /mageOutput Class Reference for the full technical description of the arguments to
open ().) The close () routine is called just once, after all subimages and MIP levels are completed.

Below is pseudocode for writing a MIP-map (a multi-resolution image used for texture mapping):

const char xfilename = "foo.tif";

const int xres = 512, yres = 512;

const int channels = 3; // RGB

unsigned char *pixels = new unsigned char [xres*yresxchannels];

// Create the ImageOutput
std: :unique_ptr<ImageOutput> out = ImageOutput::create (filename);

// Be sure we can support either mipmaps or subimages

if (! out->supports ("mipmap") && ! out->supports ("multiimage")) {
std::cerr << "Cannot write a MIP-map\n";
return;

}
// Set up spec for the highest resolution
ImageSpec spec (xres, yres, channels, TypeDesc::UINT38);

// Use Create mode for the first level.
ImageOutput: :OpenMode appendmode = ImageOutput::Create;

// Write images, halving every time, until we're down to
// 1 pixel in either dimension
while (spec.width >= 1 && spec.height >= 1) {
out->open (filename, spec, appendmode) ;
out->write_image (TypeDesc::UINT8, pixels);
// Assume halve () resamples the image to half resolution
halve (pixels, spec.width, spec.height);
// Don't forget to change spec for the next iteration
spec.width /= 2;
spec.height /= 2;

// For subsequent levels, change the mode argument to
// open(). If the format doesn't support MIPmaps directly,

(continues on next page)

3.2. Advanced Image Output 53

OpenimagelO, Release 2.3.9

(continued from previous page)

// try to emulate it with subimages.
if (out->supports ("mipmap"))
appendmode = ImageOutput::AppendMIPLevel;
else
appendmode = ImageOutput: :AppendSubimage;
}

out—->close ();

In this example, we have used writeimage (), but of course writescanline (), writetile (), and
write_rectangle () work as you would expect, on the current MIP level.

3.2.9 Per-channel formats
Some image formats allow separate per-channel data formats (for example, hal £ data for colors and f1oat data for
depth). When this is desired, the following steps are necessary:

1. Verify that the writer supports per-channel formats by checking supports ("channelformats").

2. The ImageSpec passed to open () should have its channel formats vector filled with the types for each
channel.

3. The call to write scanline (), read_scanlines (), write_tile(), write_tiles (), or
write_image () should pass a data pointer to the raw data, already in the native per-channel format of
the file and contiguously packed, and specify that the data is of type TypeUnknown.

For example, the following code fragment will write a 5-channel image to an OpenEXR file, consisting of R/G/B/A
channels in half and a Z channel in float:

// Mixed data type for the pixel
struct Pixel { half r,qg,b,a; float z; };
Pixel pixels[xresx*yres];

std: :unique_ptr<ImageOutput> out = ImageOutput::create ("foo.exr");

// Double check that this format accepts per-channel formats
if (! out->supports("channelformats")) {
return;

// Prepare an ImageSpec with per—-channel formats
ImageSpec spec (xres, yres, 5, TypeDesc::FLOAT);
spec.channelformats.push_back (TypeDesc::HALF);
spec.channelformats.push_back (TypeDesc::HALF);
spec.channelformats.push_back (TypeDesc::HALF);
spec.channelformats.push_back (TypeDesc::HALF);
spec.channelformats.push_back (TypeDesc::FLOAT);
spec.channelnames.clear ();
spec.channelnames.push_back (
spec.channelnames.push_back (
spec.channelnames.push_back ("
spec.channelnames.push_back (
spec.channelnames.push_back (

out->open (filename, spec);

out->write_image (TypeDesc::UNKNOWN, /* use channel formats x/
pixels, /* data buffer #*/
sizeof (Pixel)); /* pixel stride =/

54 Chapter 3. ImageOutput: Writing Images

OpenimagelO, Release 2.3.9

3.2.10 Writing “deep” data

Some image file formats (OpenEXR only, at this time) support the concept of “deep” pixels — those containing multiple
samples per pixel (and a potentially differing number of them in each pixel). You can tell if a format supports deep
images by checking supports ("deepdata"), and you can specify a deep data in an ImageSpec by setting its
deep field will be t rue.

Deep files cannot be written with the usual write_scanline (), write_scanlines (), write_tile(),
write_tiles (), write_image () functions, due to the nature of their variable number of samples per pixel.
Instead, ImageOutput has three special member functions used only for writing deep data:

bool write_deep_scanlines (int ybegin, int yend, int z,
const DeepData &deepdata);

bool write_deep_tiles (int xbegin, int xend, int ybegin, int yend,
int zbegin, int zend, const DeepData &deepdata);

bool write_deep_image (const DeepData &deepdata);

It is only possible to write “native” data types to deep files; that is, there is no automatic translation into arbitrary data
types as there is for ordinary images. All three of these functions are passed deep data in a special DeepData structure,
described in detail in Section “Deep” pixel data: DeepData.

Here is an example of using these methods to write a deep image:

// Prepare the spec for 'half' RGBA, 'float' z

int nchannels = 5;

ImageSpec spec (xres, yres, nchannels);

TypeDesc channeltypes[] = { TypeDesc::HALF, TypeDesc::HALF,
TypeDesc: :HALF, TypeDesc::HALF, TypeDesc::FLOAT };

spec.z_channel = 4;

spec.channelnames[spec.z_channel] = "72";

spec.channeltypes.assign (channeltypes+0, channeltypes+nchannels);

spec.deep = true;

// Prepare the data (sorry, complicated, but need to show the gist)
DeepData deepdata;
deepdata.init (spec);
for (int y = 0; vy < yres; ++y)

for (int x = 0; x < xres; ++x)

deepdata.set_samples (y*xres+x, ...samples for that pixel...);

deepdata.alloc (); // allocate pointers and data
int pixel = 0;
for (int yv = 0; vy < yres; ++y)

for (int x = 0; x < xres; ++x, ++pixel)
for (int chan = 0; chan < nchannels; ++chan)
for (int samp = 0; samp < deepdata.samples (pixel); ++samp)
deepdata.set_deep_value (pixel, chan, samp, ...value...);

// Create the output

std: :unique_ptr<ImageOutput> out = ImageOutput::create (filename);
if (! out)
return;
// Make sure the format can handle deep data and per—-channel formats
if (! out->supports ("deepdata") || ! out->supports ("channelformats"))
return;

(continues on next page)

3.2. Advanced Image Output 55

OpenimagelO, Release 2.3.9

(continued from previous page)

// Do the I/0O (this is the easy part!)
out->open (filename, spec);
out->write_deep_image (deepdata);
out—>close ();

3.2.11 Copying an entire image

Suppose you want to copy an image, perhaps with alterations to the metadata but not to the pixels. You could open
an ImageInput and perform a read_image (), and open another ImageOutput and call write_image () to
output the pixels from the input image. However, for compressed images, this may be inefficient due to the unnecessary
decompression and subsequent re-compression. In addition, if the compression is lossy, the output image may not
contain pixel values identical to the original input.

A special copy_image () method of ImageOutput is available that attempts to copy an image from an open
ImageInput (of the same format) to the output as efficiently as possible with without altering pixel values, if at all
possible.

Not all format plugins will provide an implementation of copy_image () (in fact, most will not), but the default
implemenatation simply copies pixels one scanline or tile at a time (with decompression/recompression) so it’s still
safe to call. Furthermore, even a provided copy_image () is expected to fall back on the default implementation
if the input and output are not able to do an efficient copy. Nevertheless, this method is recommended for copying
images so that maximal advantage will be taken in cases where savings can be had.

The following is an example use of copy_image () to transfer pixels without alteration while modifying the image
description metadata:

// Open the input file
const char xinput = "input.jpg";
std: :unique_ptr<Imagelnput> in = Imagelnput::open (input);

// Make an output spec, identical to the input except for metadata
ImageSpec out_spec = in->spec|();
out_spec.attribute ("ImageDescription”, "My Title");

// Create the output file and copy the image

const char xoutput = "output.jpg";

std: :unique_ptr<ImageOutput> out = ImageOutput::create (output);
out—>open (output, out_spec);

out->copy_image (in);

// Clean up
out—->close ();
in->close ();

56 Chapter 3. ImageOutput: Writing Images

OpenimagelO, Release 2.3.9

3.2.12 Custom I/O proxies (and writing the file to a memory buffer)

Some file format writers allow you to supply a custom I/O proxy object that can allow bypassing the usual file I/O with
custom behavior, including the ability to fill an in-memory buffer with a byte-for-byte representation of the correctly
formatted file that would have been written to disk.

Only some output format writers support this feature. To find out if a particular file format supports this feature, you
can create an ImageOutput of the right type, and check if it supports the feature name "ioproxy":

auto out = ImageOutput::create (filename);
if (! out || I out->supports ("ioproxy")) {
return;

ImageOutput writers that support "ioproxy" will respond to a special attribute, "oiio:ioproxy", which
passes a pointer to a Filesystem: : IOProxy* (see OpenlmagelO’s filesystem.h for this type and its sub-
classes). IOProxy is an abstract type, and concrete subclasses include IOF i 1e (which wraps I/O to an open FILE *)
and TOVecOutput (which sends outputto a std: : vector<unsigned char>).

Here is an example of using a proxy that writes the “file” toa std: : vector<unsigned char>:

// ImageSpec describing the image we want to write.
ImageSpec spec (xres, yres, channels, TypeDesc::UINT38);

std: :vector<unsigned char> file_buffer; // bytes will go here
Filesystem: :I0VecOutput vecout (file_buffer); // I/0 proxy object

auto out = ImageOutput::create ("out.exr", &vecout);
out->open ("out.exr", spec);
out->write_image (...);

out—->close ();

// At this point, file buffer will contain the "file"

3.2.13 Custom search paths for plugins

When you call ImageOutput: :create (), the OpenlmagelO library will try to find a plugin that is able to write
the format implied by your filename. These plugins are alternately known as DLL’s on Windows (with the .d11
extension), DSO’s on Linux (with the . so extension), and dynamic libraries on Mac OS X (with the .dylib exten-
sion).

OpenlmagelO will look for matching plugins according to search paths, which are strings giving a list of directories
to search, with each directory separated by a colon :. Within a search path, any substrings of the form {$FOO}
will be replaced by the value of environment variable FOO. For example, the searchpath "${HOME } /plugins:/
shared/plugins" will first check the directory /home/tom/plugins (assuming the user’s home directory is
/home/tom), and if not found there, will then check the directory /shared/plugins.

The first search path it will check is that stored in the environment variable OITO_LIBRARY_PATH. It will check
each directory in turn, in the order that they are listed in the variable. If no adequate plugin is found in any of the
directories listed in this environment variable, then it will check the custom searchpath passed as the optional second
argument to ImageOutput : : create (), searching in the order that the directories are listed. Here is an example:

char »mysearch = "/usr/myapp/lib:S${HOME}/plugins";
std: :unique_ptr<ImageOutput> out = ImageOutput::create (filename, mysearch);

3.2. Advanced Image Output 57

OpenimagelO, Release 2.3.9

3.2.14 Error checking

Nearly every ImageOutput API function returns a bool indicating whether the operation succeeded (t rue) or
failed (false). In the case of a failure, the ImageOutput will have saved an error message describing in more
detail what went wrong, and the latest error message is accessible using the ImageOutput method geterror (),
which returns the message as a std: : string.

The exception to this rule is ImageOutput: : create (), which returns NULL if it could not create an appropriate
ImageOutput. And in this case, since no ImageOutput exists for which you can call its geterror () function,
there exists a global geterror () function (in the OpenImage IO namespace) that retrieves the latest error message
resulting from a call to create ().

Here is another version of the simple image writing code from Section /mage Output Made Simple, but this time it is
fully elaborated with error checking and reporting:

#include <OpenImageIO/imageio.h>
using namespace OIIO;

const char xfilename = "foo.jpg";

const int xres = 640, yres = 480;

const int channels = 3; // RGB

unsigned char pixels[xresxyresxchannels];

std: :unique_ptr<ImageOutput> out = ImageOutput::create (filename);
if (! out) {
std::cerr << "Could not create an ImageOutput for "
<< filename << ", error = "
<< OpenlImagelO::geterror () << "\n";
return;
}

ImageSpec spec (xres, yres, channels, TypeDesc::UINT38);

if (! out->open (filename, spec)) {
std::cerr << "Could not open " << filename
<< ", error = " << out->geterror() << "\n";
return;
}
if (! out->write_image (TypeDesc::UINT8, pixels)) {
std::cerr << "Could not write pixels to " << filename
<< ", error = " << out->geterror() << "\n";
return;
}
if (! out->close ()) {
std::cerr << "Error closing " << filename
<< ", error = " << out->geterror() << "\n";
return;

58 Chapter 3. ImageOutput: Writing Images

OpenimagelO, Release 2.3.9

3.3 ImageOutput Class Reference

class OIIO::ImageOutput
ImageOutput abstracts the writing of an image file in a file format-agnostic manner.

Users don’t directly declare these. Instead, you call the create () static method, which will return a
unique_ptr holding a subclass of ImageOutput that implements writing the particular format.

Creating an ImageOutput

static unique_ptr create (string_view filename, Filesystem::10Proxy *ioproxy = nullptr, string_view
plugin_searchpath ="")
Create an TmageOutput that can be used to write an image file. The type of image file (and hence, the

particular subclass of TmageOutput returned, and the plugin that contains its methods) is inferred from
the name, if it appears to be a full filename, or it may also name the format.

Return A unique_ptr that will close and free the /mageOutput when it exits scope or is reset. The
pointer will be empty if the required writer was not able to be created.

Parameters

e filename: The name of the file format (e.g., “openexr”), a file extension (e.g., “exr”), or a
filename from which the the file format can be inferred from its extension (e.g., “hawaii.exr”).

* plugin_searchpath: An optional colon-separated list of directories to search for Openlm-
agelO plugin DSO/DLL’s.

* ioproxy: Optional pointer to an IOProxy to use (not supported by all formats, see
supports ("ioproxy")). The caller retains ownership of the proxy.

Opening and closing files for output
enum OpenMode
Modes passed to the open () call.
Values:
enumerator Create
enumerator AppendSubimage
enumerator AppendMIPLevel

inline virtual int supports (string_view feature) const
Given the name of a “feature”, return whether this /mageOutput supports output of images with the given
properties. Most queries will simply return O for “doesn’t support” and 1 for “supports it,” but it is ac-
ceptable to have queries return other nonzero integers to indicate varying degrees of support or limits (but
should be clearly documented as such).

Feature names that /mageOutput implementations are expected to recognize include:

e "tiles" : Is this format writer able to write tiled images?

* "rectangles" : Does this writer accept arbitrary rectangular pixel regions (via
write_rectangle ())? Returning O indicates that pixels must be transmitted via

3.3. ImageOutput Class Reference 59

OpenimagelO, Release 2.3.9

write_scanline () (if scanline-oriented) or write tile () (if tile-oriented, and only if
supports ("tiles") returns true).

"random_access" : May tiles or scanlines be written in any order (0 indicates that they must be
in successive order)?

"multiimage™" : Does this format support multiple subimages within a file?

"appendsubimage" : Does this format support multiple subimages that can be successively ap-
pended at will via open (name, spec, AppendSubimage) ? A value of 0 means that the format
requires pre-declaring the number and specifications of the subimages when the file is first opened,
with open (name, subimages, specs).

"mipmap" : Does this format support multiple resolutions for an image/subimage?
"volumes" : Does this format support “3D” pixel arrays (a.k.a. volume images)?
"alpha" : Can this format support an alpha channel?

"nchannels" : Can this format support arbitrary number of channels (beyond RGBA)?

"rewrite" : May the same scanline or tile be sent more than once? Generally, this is true for
plugins that implement interactive display, rather than a saved image file.

"empty" : Does this plugin support passing a NULL data pointer to the various write routines to
indicate that the entire data block is composed of pixels with value zero? Plugins that support this
achieve a speedup when passing blank scanlines or tiles (since no actual data needs to be transmitted
or converted).

"channelformats" : Does this format writer support per-channel data formats, respecting the
ImageSpec’s channel formats field? If not, it only accepts a single data format for all channels
and will ignore the channelformats field of the spec.

"displaywindow" : Does the format support display (“full”’) windows distinct from the pixel data
window?

"origin" : Does the image format support specifying a pixel window origin (i.e., nonzero /mage-
Spec x,v, z)?

"negativeorigin™" : Does the image format allow data and display window origins (i.e., /mage-
Spec x, vy, z, full_x, full_y, full_z) to have negative values?

"deepdata" : Does the image format allow “deep” data consisting of multiple values per pixel (and
potentially a differing number of values from pixel to pixel)?

"arbitrary_metadata" : Does the image file format allow metadata with arbitrary names (and
either arbitrary, or a reasonable set of, data types)? (Versus the file format supporting only a fixed list
of specific metadata names/values.)

"exif" Does the image file format support Exif camera data (either specifically, or via arbitrary
named metadata)?

"iptc" Does the image file format support IPTC data (either specifically, or via arbitrary named
metadata)?

"ioproxy" Does the image file format support writing to an IOProxy?

"procedural™" : Is this a purely procedural output that doesn’t write an actual file?

"thumbnail" : Does this format writer support adding a reduced resolution copy of the image via
the thumbnail () method?

60

Chapter 3. ImageOutput: Writing Images

OpenimagelO, Release 2.3.9

e "thumbnail_after_write" : Does this format writer support calling thumbnail ()
after the scanlines or tiles have been specified? (Supporting "thumbnail" but not
"thumbnail_ after_write" means that any thumbnail must be supplied immediately after
open (), prior to any of the write_* () calls.)

This list of queries may be extended in future releases. Since this can be done simply by recognizing new
query strings, and does not require any new API entry points, addition of support for new queries does not
break ““link compatibility” with previously-compiled plugins.

virtual bool open (const std::string &name, const ImageSpec &newspec, OpenMode mode = Cre-

ate) =0
Open the file with given name, with resolution and other format data as given in newspec. It is legal

to call open multiple times on the same file without a call to close (), if it supports multiimage and
mode is AppendSubimage, or if it supports MIP-maps and mode is AppendMIPLevel this is interpreted as
appending a subimage, or a MIP level to the current subimage, respectively.

Return true upon success, or false upon failure.
Parameters
* name: The name of the image file to open.
* newspec: The ImageSpec describing the resolution, data types, etc.

* mode: Specifies whether the purpose of the open is to create/truncate the file (default:
Create), append another subimage (AppendSubimage), or append another MIP level
(AppendMIPLevel).

inline virtual bool open (const std::string &name, int subimages, const ImageSpec *specs)
Open a multi-subimage file with given name and specifications for each of the subimages. Upon success,
the first subimage will be open and ready for transmission of pixels. Subsequent subimages will be denoted
with the usual call of open (name, spec, AppendSubimage) (and MIP levels by open (name,
spec, AppendMIPLevel)).

The purpose of this call is to accommodate format-writing libraries that must know the number and
specifications of the subimages upon first opening the file; such formats can be detected by:: sup-
ports(“multiimage”) && !supports(“appendsubimage”) The individual specs passed to the appending
open() calls for subsequent subimages must match the ones originally passed.

Return true upon success, or false upon failure.
Parameters
* name: The name of the image file to open.
* subimages: The number of subimages (and therefore the length of the specs [] array.

* specs[]: Pointer to an array of TmageSpec objects describing each of the expected subim-
ages.

inline const ImageSpec &spec (void) const
Return a reference to the image format specification of the current subimage. Note that the contents of the
spec are invalid before open () or after c1ose ().

virtual bool close () =0
Closes the currently open file associated with this /mageOutput and frees any memory or resources asso-
ciated with it.

3.3. ImageOutput Class Reference 61

OpenimagelO, Release 2.3.9

Writing pixels

Common features of all the wr ite methods:

The format parameter describes the data type of the data []. The write methods automatically convert
the data from the specified format to the actual output data type of the file (as was specified by the
ImageSpec passed to open ()). If format is TypeUnknown, then rather than converting from format,
it will just copy pixels assumed to already be in the file’s native data layout (including, possibly, per-
channel data formats as specified by the /mageSpec’s channel fomats field).

The stride values describe the layout of the data buffer: xstride is the distance in bytes between
successive pixels within each scanline. ystride is the distance in bytes between successive scanlines.
For volumetric images zst ride is the distance in bytes between successive “volumetric planes”. Strides
set to the special value Aut oSt ride imply contiguous data, i.e.,

xstride = format.size () * nchannels
ystride = xstride * width
zstride = ystride * height

Any range parameters (such as ybegin and yend) describe a “half open interval”, meaning that begin
is the first item and end is one past the last item. That means that the number of items is end - begin.

For ordinary 2D (non-volumetric) images, any z or zbegin coordinates should be 0 and any zend should
be 1, indicating that only a single image “plane” exists.

Scanlines or tiles must be written in successive increasing coordinate order, unless the particular output
file driver allows random access (indicated by supports ("random_access")).

All write functions return t rue for success, false for failure (after which a call to geterror () may
retrieve a specific error message).

virtual bool write_scanline (inty, int z, TypeDesc format, const void *data, stride_t xstride =

AutoStride)
Write the full scanline that includes pixels (*,y,z). For 2D non-volume images, z should be 0. The

xstride value gives the distance between successive pixels (in bytes). Strides set to AutoStride
imply “contiguous” data.

Return true upon success, or false upon failure.
Parameters
* y/z: The y & z coordinates of the scanline.
* format: A TypeDesc describing the type of data.
* data: Pointer to the pixel data.

* xstride: The distance in bytes between successive pixels in data (or AutoStride).

virtual bool write_scanlines (int ybegin, int yend, int z, TypeDesc format, const void *data,

stride_t xstride = AutoStride, stride_t ystride = AutoStride)
Write multiple scanlines that include pixels (*,y,z) for all ybegin <=y < yend, from data. This is analo-

gousto write_scanline (y, z, format, data, xstride) repeatedly for each of the scanlines in
turn (the advantage, though, is that some image file types may be able to write multiple scanlines more
efficiently or in parallel, than it could with one scanline at a time).

Return true upon success, or false upon failure.

62

Chapter 3. ImageOutput: Writing Images

OpenimagelO, Release 2.3.9

Parameters
* ybegin/yend: The y range of the scanlines being passed.
* z: The z coordinate of the scanline.
* format: A TypeDesc describing the type of data.
* data: Pointer to the pixel data.

* xstride/ystride: The distance in bytes between successive pixels and scanlines (or
AutoStride).

virtual bool write_tile (intx, int y, int z, TypeDesc format, const void *data, stride_t xstride =
AutoStride, stride_t ystride = AutoStride, stride_t zstride = AutoStride)
Write the tile with (x,y,z) as the upper left corner. The three stride values give the distance (in bytes)
between successive pixels, scanlines, and volumetric slices, respectively. Strides set to AutoStride imply
‘contiguous’ data in the shape of a full tile, i.e.,

xstride = format.size() * spec.nchannels
ystride xstride » spec.tile_width
zstride = ystride * spec.tile_height

Return true upon success, or false upon failure.

Note This call will fail if the image is not tiled, or if (x,y,z) is not the upper left corner coordinates of a
tile.

Parameters
* x/vy/z: The upper left coordinate of the tile being passed.
* format: A TypeDesc describing the type of data.
* data: Pointer to the pixel data.

* xstride/ystride/zstride: The distance in bytes between successive pixels, scanlines,
and image planes (or AutoStride to indicate a “contiguous” single tile).

virtual bool write_tiles (int xbegin, int xend, int ybegin, int yend, int zbegin, int zend, TypeDesc
format, const void *data, stride_t xstride = AutoStride, stride_t ystride

= AutoStride, stride_t zstride = AutoStride)
Write the block of multiple tiles that include all pixels in

[xbegin, xend) X [ybegin,yend) X [zbegin, zend)

This is analogous to calling write_tile (x,v, z, ...) foreach tile in turn (but for some file formats,
passing multiple tiles may allow it to write more efficiently or in parallel).

The begin/end pairs must correctly delineate tile boundaries, with the exception that it may also be the end
of the image data if the image resolution is not a whole multiple of the tile size. The stride values give
the data spacing of adjacent pixels, scanlines, and volumetric slices (measured in bytes). Strides set to
AutoStride imply contiguous data in the shape of the [begin,end) region, i.e.,

xstride
ystride

format.size () * spec.nchannels
xstride % (xend-xbegin)
zstride = ystride *» (yend-ybegin)

Return true upon success, or false upon failure.

3.3. ImageOutput Class Reference 63

OpenimagelO, Release 2.3.9

Note The call will fail if the image is not tiled, or if the pixel ranges do not fall along tile (or image)
boundaries, or if it is not a valid tile range.

Parameters
* xbegin/xend: The x range of the pixels covered by the group of tiles passed.
* ybegin/yend: The y range of the pixels covered by the tiles.

* zbegin/zend: The z range of the pixels covered by the tiles (for a 2D image, zbegin=0 and
zend=1).

* format: A TypeDesc describing the type of data.
* data: Pointer to the pixel data.

* xstride/ystride/zstride: The distance in bytes between successive pixels, scanlines,
and image planes (or AutoStride).

virtual bool write_rectangle (int xbegin, int xend, int ybegin, int yend, int zbegin, int zend, Type-

Desc format, const void *data, stride_t xstride = AutoStride,

stride_t ystride = AutoStride, stride_t zstride = AutoStride)
Write a rectangle of pixels given by the range

[xbegin, xend) X [ybegin,yend) X [zbegin, zend)

The stride values give the data spacing of adjacent pixels, scanlines, and volumetric slices (measured in
bytes). Strides set to AutoStride imply contiguous data in the shape of the [begin,end) region, i.e.,

xstride = format.size() * spec.nchannels
ystride xstride *» (xend-xbegin)
zstride = ystride * (yend-ybegin)

Return true upon success, or false upon failure.
Note The call will fail for a format plugin that does not return true for supports ("rectangles").
Parameters
* xbegin/xend: The x range of the pixels being passed.
* ybegin/yend: The y range of the pixels being passed.
* zbegin/zend: The z range of the pixels being passed (for a 2D image, zbegin=0 and zend=1).
* format: A TypeDesc describing the type of data.
* data: Pointer to the pixel data.

* xstride/ystride/zstride: The distance in bytes between successive pixels, scanlines,
and image planes (or AutoStride).

virtual bool write_image (TypeDesc format, const void *data, stride_t xstride = AutoStride,

stride_t ystride = AutoStride, stride_t zstride = AutoStride, Progress-
Callback progress_callback = nullptr, void *progress_callback_data =

nullptr)
Write the entire image of spec.width x spec.height x spec.depth pixels, from a buffer

with the given strides and in the desired format.

Depending on the spec, this will write either all tiles or all scanlines. Assume that data points to a layout
in row-major order.

64

Chapter 3. ImageOutput: Writing Images

OpenimagelO, Release 2.3.9

Because this may be an expensive operation, a progress callback may be passed. Periodically, it will be
called as follows:

progress_callback (progress_callback_data, float done);

where done gives the portion of the image (between 0.0 and 1.0) that has been written thus far.

Return true upon success, or false upon failure.
Parameters
* format: A TypeDesc describing the type of data.
* data: Pointer to the pixel data.

* xstride/ystride/zstride: The distance in bytes between successive pixels, scanlines,
and image planes (or AutoStride).

* progress_callback/progress_callback_data: Optional progress callback.

virtual bool write_deep_scanlines (int ybegin, int yend, int z, const DeepData &deepdata)
Write deep scanlines containing pixels (*,y,z), for all y in the range [ybegin,yend), to a deep file. This will
fail if it is not a deep file.

Return true upon success, or false upon failure.
Parameters
* ybegin/yend: The y range of the scanlines being passed.
* z: The z coordinate of the scanline.
* deepdata: A DeepData object with the data for these scanlines.

virtual bool write_deep_tiles (int xbegin, int xend, int ybegin, int yend, int zbegin, int zend,
const DeepData &deepdata)
Write the block of deep tiles that include all pixels in the range

[xbegin, xend) X [ybegin,yend) X [zbegin, zend)

The begin/end pairs must correctly delineate tile boundaries, with the exception that it may also be the end
of the image data if the image resolution is not a whole multiple of the tile size.

Return true upon success, or false upon failure.

Note The call will fail if the image is not tiled, or if the pixel ranges do not fall along tile (or image)
boundaries, or if it is not a valid tile range.

Parameters
* xbegin/xend: The x range of the pixels covered by the group of tiles passed.
* ybegin/yend: The y range of the pixels covered by the tiles.

* zbegin/zend: The z range of the pixels covered by the tiles (for a 2D image, zbegin=0 and
zend=1).

* deepdata: A DeepData object with the data for the tiles.

3.3. ImageOutput Class Reference 65

OpenimagelO, Release 2.3.9

virtual bool write_deep_image (const DeepData &deepdata)
Write the entire deep image described by deepdata. Depending on the spec, this will write either all
tiles or all scanlines.

Return true upon success, or false upon failure.
Parameters
* deepdata: A DeepData object with the data for the image.

inline virtual bool set_thumbnail (const ImageBuf &thumb)
Specify a reduced-resolution (“thumbnail”) version of the image. Note that many image formats may
require the thumbnail to be specified prior to writing the pixels.

Return true upon success, false if it was not possible to write the thumbnail, or if this file format (or
writer) does not support thumbnails.

Note This method was added to OpenlmagelO 2.3.
Parameters

e thumb: A reference to an ImageBuf containing the thumbnail image.

Public Types

using unique_ptr = std::unique_ptr</mageOutput>
unique_ptr to an /mageOutput.

typedef [mageOutput *(*Creator) ()
Call signature of a function that creates and returns an ImageOutput =.

Public Functions

virtual const char *format_name (void) const =0
Return the name of the format implemented by this class.

virtual bool copy_image (/magelnput *in)
Read the pixels of the current subimage of in, and write it as the next subimage of *this, in a way that
is efficient and does not alter pixel values, if at all possible. Both in and this must be a properly-opened
ImageInput and TmageOutput, respectively, and their current images must match in size and number
of channels.

If a particular /mageOutput implementation does not supply a copy_image method, it will inherit the
default implementation, which is to simply read scanlines or tiles from in and write them to »this.
However, some file format implementations may have a special technique for directly copying raw pixel
data from the input to the output, when both are the same file type and the same pixel data type. This can
be more efficient than in->read_image () followed by out->write_ image (), and avoids any
unintended pixel alterations, especially for formats that use lossy compression.

Note: this method is NOT thread-safe, since it depends on persistent state in the /magelnput.

Return true upon success, or false upon failure.
Parameters

e in: A pointer to the open ImageInput to read from.

66 Chapter 3. ImageOutput: Writing Images

OpenimagelO, Release 2.3.9

inline virtual bool set_ioproxy (Filesystem::I0Proxy *ioproxy)
Set an IOProxy for this writer. This must be called prior to open (), and only for writers that support
them (supports ("ioproxy")). The caller retains ownership of the proxy.

Return true for success, false for failure.

bool has_error () const
Is there a pending error message waiting to be retrieved, that resulted from an /mageOutput API call made
by the this thread?

Note that any error () calls issued are thread-specific, and the geterror () /has_error () are
expected to be called by the same thread that called whichever API function encountered an error.

std::string geterror (bool clear = true) const
Return the text of all pending error messages issued against this /mageOutput by the calling thread, and
clear the pending error message unless clear is false. If no error message is pending, it will return an
empty string.

Note that any error () calls issued are thread-specific, and the geterror () /has_error () are
expected to be called by the same thread that called whichever API function encountered an error.

template<typename ...Args>

inline void error (const char *fint, const Args&... args) const
Error reporting for the plugin implementation: call this with Strutil: : format-like arguments. It is
not necessary to have the error message contain a trailing newline. Use with caution! Some day this will
change to be fmt-like rather than printf-like.

template<typename ... Args>

inline void errorf (const char *fmf, const Args&... args) const
Error reporting for the plugin implementation: call this with printf-like arguments. It is not necessary to
have the error message contain a trailing newline.

template<typename ...Args>

inline void errorfmt (const char *fint, const Args&... args) const
Error reporting for the plugin implementation: call this with std::format-like arguments. It is not necessary
to have the error message contain a trailing newline.

void threads (int n)
Set the threading policy for this /mageOutput, controlling the maximum amount of parallelizing thread
“fan-out” that might occur during large write operations. The default of 0 means that the global
attribute ("threads") value should be used (which itself defaults to using as many threads as
cores; see Section Global Attributes_).

The main reason to change this value is to set it to 1 to indicate that the calling thread should do all the
work rather than spawning new threads. That is probably the desired behavior in situations where the
calling application has already spawned multiple worker threads.

int threads () const
Retrieve the current thread-spawning policy.

See threads (int)

3.3. ImageOutput Class Reference 67

OpenimagelO, Release 2.3.9

68 Chapter 3. ImageOutput: Writing Images

CHAPTER
FOUR

IMAGEINPUT: READING IMAGES

4.1 Image Input Made Simple

Here is the simplest sequence required to open an image file, find out its resolution, and read the pixels (converting

them into 8-bit values in memory, even if that’s not the way they’re stored in the file):

#include <OpenImageIO/imageio.h>
using namespace OIIO;

auto in = Imagelnput::open (filename);
if (! in)

return;
const ImageSpec &spec = in—->spec();
int xres = spec.width;
int yres = spec.height;
int channels = spec.nchannels;

std: :vector<unsigned char> pixels (xres*yresxchannels);
in->read_image (TypeDesc::UINT8, &pixels([0]);
in->close ();

Here is a breakdown of what work this code is doing:

* Search for an ImagelO plugin that is capable of reading the file (foo. jpg), first by trying to deduce the cor-
rect plugin from the file extension, but if that fails, by opening every ImagelO plugin it can find until one
will open the file without error. When it finds the right plugin, it creates a subclass instance of Imageln-
put that reads the right kind of file format, and tries to fully open the file. The open () method returns a
std: :unique_ptr<ImageInput> that will be automatically freed when it exits scope.

auto in = ImagelInput::open (filename);

 The specification, accessible as in—>spec (), contains vital information such as the dimensions of the image,
number of color channels, and data type of the pixel values. This is enough to allow us to allocate enough space
for the image.

const ImageSpec &spec = in->spec();

int xres = spec.width;

int yres = spec.height;

int channels = spec.nchannels;

std: :vector<unsigned char> pixels (xresxyresxchannels);

Note that in this example, we don’t care what data format is used for the pixel data in the file — we allocate
enough space for unsigned 8-bit integer pixel values, and will rely on OpenlmagelO’s ability to convert to our
requested format from the native data format of the file.

69

OpenimagelO, Release 2.3.9

* Read the entire image, hiding all details of the encoding of image data in the file, whether the file is scanline-
or tile-based, or what is the native format of the data in the file (in this case, we request that it be automatically
converted to unsigned 8-bit integers).

in->read_image (TypeDesc::UINT8, &pixels[0]);

¢ Close the file.

in->close ();

* When in exits its scope, the Imagelnput will automatically be destroyed and any resources used by the plugin
will be released.

4.2 Advanced Image Input

Let’s walk through some of the most common things you might want to do, but that are more complex than the simple
example above.

4.2.1 Reading individual scanlines and tiles

The simple example of Section Image Input Made Simple read an entire image with one call. But sometimes you
want to read a large image a little at a time and do not wish to retain the entire image in memory as you process it.
OpenlmagelO allows you to read images one scanline at a time or one tile at a time.

Examining the ImageSpec reveals whether the file is scanline or tile-oriented: a scanline image will have spec.
tile_width and spec.tile_height set to 0, whereas a tiled images will have nonzero values for the tile
dimensions.

Reading scanlines

Individual scanlines may be read using the read_scanline () APIcall:

auto in = ImageInput::open (filename);

const ImageSpec &spec = in->spec();
if (spec.tile_width == 0) {

std::vector<unsigned char> scanline (spec.widthxspec.channels);
for (int yv = 0; vy < yres; ++y) {
in->read_scanline (y, 0, TypeDesc::UINT8, &scanlinelO]);
. process data in scanline[0..widthxchannels-1]
}
} else {
handle tiles, or reject the file
}

in->close ();

The first two arguments to read_scanline () specify which scanline is being read by its vertical (y) scanline
number (beginning with 0) and, for volume images, its slice (z) number (the slice number should be O for 2D non-
volume images). This is followed by a TypeDesc describing the data type of the pixel buffer you are supplying, and
a pointer to the pixel buffer itself. Additional optional arguments describe the data stride, which can be ignored for
contiguous data (use of strides is explained in Section Data Strides).

70 Chapter 4. Imagelnput: Reading Images

OpenimagelO, Release 2.3.9

Nearly all Imagelnput implementations will be most efficient reading scanlines in strict order (starting with scanline
0, then 1, up to yres—1, without skipping any). An Imagelnput is required to accept read_scanline () requests
in arbitrary order, but depending on the file format and reader implementation, out-of-order scanline reads may be
inefficient.

There is also a read_scanlines () function that operates similarly, except that it takes a ybegin and yend that
specify a range, reading all scanlines ybegin <= y < yend. For most image format readers, this is implemented
as a loop over individual scanlines, but some image format readers may be able to read a contiguous block of scanlines
more efficiently than reading each one individually.

The full descriptions of the read_scanline () and read_scanlines () functions may be found in Section
Imagelnput Class Reference.

Reading tiles

Once you open () an image file, you can find out if it is a tiled image (and the tile size) by examining the ImageSpec’s
tile_width,tile_height,and tile_depth fields. If they are zero, it’s a scanline image and you should read
pixels using read_scanline (), not read_tile ().

auto in = ImagelInput::open (filename);
const ImageSpec &spec = in->spec();
if (spec.tile_width == 0) {
read by scanline
} else {
// Tiles

int tilesize = spec.tile_width * spec.tile_height;
std::vector<unsigned char> tile (tilesize % spec.channels);
for (int y = 0; vy < yres; vy += spec.tile_height) {
for (int x = 0; x < xres; x += spec.tile_width) {
in->read_tile (x, y, 0, TypeDesc::UINT8, &tile[0]);
process the pixels in tile[]

}

in->close ();

The first three arguments to read_tile () specify which tile is being read by the pixel coordinates of any pixel
contained in the tile: x (column), y (scanline), and z (slice, which should always be O for 2D non-volume images).
This is followed by a TypeDesc describing the data format of the pixel buffer you are supplying, and a pointer to
the pixel buffer. Pixel data will be written to your buffer in order of increasing slice, increasing scanline within each
slice, and increasing column within each scanline. Additional optional arguments describe the data stride, which can
be ignored for contiguous data (use of strides is explained in Section Data Strides).

All Imagelnput implementations are required to support reading tiles in arbitrary order (i.e., not in strict order of
increasing y rows, and within each row, increasing x column, without missing any tiles).

The full description of the read_tile () function may be found in Section Imagelnput Class Reference.

4.2. Advanced Image Input 7

OpenimagelO, Release 2.3.9

4.2.2 Converting formats

The code examples of the previous sections all assumed that your internal pixel data is stored as unsigned 8-bit integers
(i.e., 0-255 range). But OpenlmagelO is significantly more flexible.

You may request that the pixels be stored in any of several formats. This is done merely by passing the read function
the data type of your pixel buffer, as one of the enumerated type TypeDesc.

It is not required that the pixel data buffer passed to read_image (), read_scanline (), or read_tile ()
actually be in the same data format as the data in the file being read. OpenImagelO will automatically convert from
native data type of the file to the internal data format of your choice. For example, the following code will open a TIFF
and read pixels into your internal buffer represented as f1oat values. This will work regardless of whether the TIFF
file itself is using 8-bit, 16-bit, or float values.

std: :unique_ptr<Imagelnput> in = Imagelnput::open ("myfile.tif");
const ImageSpec &spec = in->spec();
int numpixels = spec.width * spec.height;

float pixels = new float [numpixels % channels];

in->read_image (TypeDesc::FLOAT, pixels);

Note that read_scanline () and read_tile () have a parameter that works in a corresponding manner.

You can, of course, find out the native type of the file simply by examining spec. format. If you wish, you may then
allocate a buffer big enough for an image of that type and request the native type when reading, therefore eliminating
any translation among types and seeing the actual numerical values in the file.

4.2.3 Data Strides

In the preceeding examples, we have assumed that the buffer passed to the read functions (i.e., the place where you
want your pixels to be stored) is contiguous, that is:

* each pixel in memory consists of a number of data values equal to the number of channels in the file;

* successive column pixels within a row directly follow each other in memory, with the first channel of pixel x
immediately following last channel of pixel x—1 of the same row;

* for whole images or tiles, the data for each row immediately follows the previous one in memory (the first pixel
of row y immediately follows the last column of row y—1);

« for 3D volumetric images, the first pixel of slice z immediately follows the last pixel of of slice z—1.

Please note that this implies that read_tile () will write pixel data into your buffer so that it is contiguous in the
shape of a single tile, not just an offset into a whole image worth of pixels.

The read_scanline () function takes an optional xstride argument, and the read_image () and
read_tile () functions take optional xstride, ystride, and zstride values that describe the distance, in
bytes, between successive pixel columns, rows, and slices, respectively, of your pixel buffer. For any of these values
that are not supplied, or are given as the special constant Aut oSt ride, contiguity will be assumed.

By passing different stride values, you can achieve some surprisingly flexible functionality. A few representative
examples follow:

* Flip an image vertically upon reading, by using negative y stride:

unsigned char pixels[spec.width * spec.height * spec.nchannels];
int scanlinesize = spec.width * spec.nchannels x sizeof (pixels[0]);

(continues on next page)

72 Chapter 4. Imagelnput: Reading Images

OpenimagelO, Release 2.3.9

(continued from previous page)

in->read_image (TypeDesc::UINTS,
(char *)pixels+(yres—1)+scanlinesize, // offset to last

AutoStride, // default x stride
-scanlinesize, // special y stride
AutoStride); // default z stride

* Read a tile into its spot in a buffer whose layout matches a whole image of pixel data, rather than having a
one-tile-only memory layout:

int pixelsize = spec.nchannels * sizeof (pixels[0]);
int scanlinesize = xpec.width » pixelsize;

in->read_tile (x, y, 0, TypeDesc::UINTS,
(char *)pixels + y*scanlinesize + x*pixelsize,
pixelsize,
scanlinesize);

Please consult Section Imagelnput Class Reference for detailed descriptions of the stride parameters to each read
function.

4.2.4 Reading channels to separate buffers

While specifying data strides allows writing entire pixels to buffers with arbitrary layouts, it is not possible to separate
those pixels into multiple buffers (i.e. to write image data to a separate or planar memory layout: RRRRGGGGBBBB
instead of the interleaved RGBRGBRGBRGB).

A workaround for this is to call read_scanlines, read_tiles or read_image repeatedly with arguments
chbegin and chend of 0 <= chbegin < spec.nchannels and chend == chbegin + 1:

// one buffer for all three channels
unsigned char pixels[spec.width * spec.height * spec.nchannels];

for (int channel = 0; channel < spec.nchannels; ++channel) {
file->read_image (
// reading one channel at a time
channel, channel + 1,
TypeDesc: :UINTS,
// writing the data to offsets spaced ‘spec.width * spec.height’
// apart
&pixels[spec.width * spec.height * channel]);

For many formats, this is nearly as fast as reading the image with interleaved pixel data if the format stores the pixels
in an interleaved layout and even slightly faster if the pixels are stored in separate planes in the file.

4.2. Advanced Image Input 73

OpenimagelO, Release 2.3.9

4.2.5 Reading metadata

The ImageSpec that is filled in by ImageInput: :open () specifies all the common properties that describe an
image: data format, dimensions, number of channels, tiling. However, there may be a variety of additional metadata
that are present in the image file and could be queried by your application.

The remainder of this section explains how to query additional metadata in the ImageSpec. It is up to the Imagelnput to
read these from the file, if indeed the file format is able to carry additional data. Individual Imagelnput implementations
should document which metadata they read.

Channel names

In addition to specifying the number of color channels, the ImageSpec also stores the names of those channels in
its channelnames field, which is a std: :vector<std: :string>. Its length should always be equal to the
number of channels (it’s the responsibility of the Imagelnput to ensure this).

Only a few file formats (and thus ImageInput implementations) have a way of specifying custom channel names, so
most of the time you will see that the channel names follow the default convention of being named "R", "G", "B",
and "A", for red, green, blue, and alpha, respectively.

Here is example code that prints the names of the channels in an image:

auto in = Imagelnput::open (filename);

const ImageSpec &spec = in->spec();

for (int i = 0; i < spec.nchannels; ++1)
std::cout << "Channel " << i << " ig "

<< spec.channelnames[i] << "\n";

Specially-designated channels

The ImageSpec contains two fields, alpha_channel and z_channel, which designate which channel numbers
represent alpha and z depth, if any. If either is set to —1, it indicates that it is not known which channel is used for that
data.

If you are doing something special with alpha or depth, it is probably safer to respect the alpha_channel and
z_channel designations (if not set to —1) rather than merely assuming that, for example, channel 3 is always the
alpha channel.

Arbitrary metadata

All other metadata found in the file will be stored in the ImageSpec’s extra_attribs field, which is a Param-
ValueList, which is itself essentially a vector of ParamValue instances. Each ParamValue stores one meta-datum
consisting of a name, type (specified by a TypeDesc), number of values, and data pointer.

If you know the name of a specific piece of metadata you want to use, you can find it using the
ImageSpec::find_attribute () method, which returns a pointer to the matching ParamValue, or nullptr
if no match was found. An optional TypeDesc argument can narrow the search to only parameters that match the
specified type as well as the name. Below is an example that looks for orientation information, expecting it to consist
of a single integer:

auto in = ImagelInput::open (filename);
const ImageSpec &spec = in->spec();
ParamValue *p = spec.find_attribute ("Orientation", Typelnt);

(continues on next page)

74 Chapter 4. Imagelnput: Reading Images

OpenimagelO, Release 2.3.9

(continued from previous page)

if (p) {
int orientation = % (int *) p->data();
} else {

std::cout << "No integer orientation in the file\n";

By convention, Imagelnput plugins will save all integer metadata as 32-bit integers (TypeDesc: :INT or
TypeDesc: : UINT), even if the file format dictates that a particular item is stored in the file as a 8- or 16-bit in-
teger. This is just to keep client applications from having to deal with all the types. Since there is relatively little
metadata compared to pixel data, there’s no real memory waste of promoting all integer types to int32 metadata.
Floating-point metadata and string metadata may also exist, of course.

For certain common types, there is an even simpler method for retrieving the metadata:

int i = spec.get_int_attribute ("Orientation", 0);
float f = spec.get_float_attribute ("PixelAspectRatio", 1.0f);
std::string s = spec.get_string_attribute ("ImageDescription", "");

This method simply returns the value. The second argument is the default value to use if the attribute named is
not found. These versions will do automatic type conversion as well — for example, if you ask for a float and
the attribute is really an int, it will return the proper float for it; or if the attribute is a UINT16 and you call
get_int_attribute (), it will succeed, promoting to an int.

It is also possible to step through all the metadata, item by item. This can be accomplished using the technique of the
following example:

for (size_ t i = 0; i < spec.extra_attribs.size(); ++1) |
const ParamValue &p (spec.extra_attribs[i]);
printf (" %$s: ", p.name.c_str());
if (p.type() == TypeString)
printf ("\"%s\"", «(const char *x)p.data());
else if (p.type() == TypeFloat)
printf ("%g", *(const float x)p.data());
else if (p.type() == Typelnt)
printf ("%d", =« (const int x)p.datal());
else if (p.type() == TypeDesc::UINT)
printf ("%u", =x(const unsigned int x)p.dataf());
else if (p.type() = TypeMatrix) {
const float *xf = (const float «)p.data();
printf ("$f $f $f Sf Sf $f Sf£f SE£ "
"sf %f $f $f %f $f $f %f",
£101, £[11, f£r21, £(31, £[4]1, £I5], flel, £[7],
fr8], £[r91, fri1oj], f£rii1y, f£r12j1, £[1131, £[141, £[15]);

}
else

printf (" <unknown data type> ");
printf ("\n");

Each individual Imagelnput implementation should document the names, types, and meanings of all metadata at-
tributes that they understand.

4.2. Advanced Image Input 75

OpenimagelO, Release 2.3.9

Color space hints

We certainly hope that you are using only modern file formats that support high precision and extended range pixels
(such as OpenEXR) and keeping all your images in a linear color space. But you may have to work with file formats
that dictate the use of nonlinear color values. This is prevalent in formats that store pixels only as 8-bit values, since
256 values are not enough to linearly represent colors without banding artifacts in the dim values.

The ImageSpec: :extra_attribs field may store metadata that reveals the color space the image file in the
"oiio:ColorSpace™" attribute (see Section Color information metadata for explanations of particular values).

The Imagelnput sets the "oiio:ColorSpace" metadata in a purely advisory capacity — the read will not con-
vert pixel values among color spaces. Many image file formats only support nonlinear color spaces (for example,
JPEG/JFIF dictates use of sRGB). So your application should intelligently deal with gamma-corrected and sRGB
input, at the very least.

The color space hints only describe color channels. You should assume that alpha or depth (z) channels (designated
by the alpha_channel and z_channel fields, respectively) always represent linear values and should never be
transformed by your application.

4.2.6 Multi-image files and MIP-maps

Some image file formats support multiple discrete subimages to be stored in one file, and/or miltiple resolutions for
each image to form a MIPmap. When you open () an Imagelnput, it will by default point to the first (i.e., number 0)
subimage in the file, and the highest resolution (level 0) MIP-map level. You can switch to viewing another subimage
or MIP-map level using the seek_subimage () function:

auto in = ImageInput::open (filename);

int subimage = 1;

int miplevel = 0;

if (in->seek_subimage (subimage, miplevel)) {
} else {

no such subimage/miplevel

}

The seek_subimage () function takes three arguments: the index of the subimage to switch to (starting with 0),
the MIPmap level (starting with O for the highest-resolution level), and a reference to an ImageSpec, into which will
be stored the spec of the new subimage/miplevel. The seek_subimage () function returns t rue upon success,
and false if no such subimage or MIP level existed. It is legal to visit subimages and MIP levels out of order; the
Imagelnput is responsible for making it work properly. It is also possible to find out which subimage and MIP level is
currently being viewed, using the current_subimage () and current_miplevel () functions, which return
the index of the current subimage and MIP levels, respectively.

Below is pseudocode for reading all the levels of a MIP-map (a multi-resolution image used for texture mapping) that
shows how to read multi-image files:

auto in = ImagelInput::open (filename);
const ImageSpec &spec = in—->spec();
int num_miplevels = 0;

while (in->seek_subimage (0, num_miplevels, spec)) {
// Note: spec has the format of the current subimage/miplevel
int npixels = spec.width % spec.height;
int nchannels = spec.nchannels;
unsigned char xpixels = new unsigned char [npixels % nchannels];

(continues on next page)

76 Chapter 4. Imagelnput: Reading Images

OpenimagelO, Release 2.3.9

(continued from previous page)

in->read_image (TypeDesc::UINT8, pixels);
do whatever you want with this level, in pixels

delete [] pixels;
++num_miplevels;

}

// Note: we break out of the while loop when seek_subimage fails
// to find a next MIP level.

in->close ();

In this example, we have used read_image (), but of course read_scanline () and read_tile () work as
you would expect, on the current subimage and MIP level.

4.2.7 Per-channel formats

Some image formats allow separate per-channel data formats (for example, hal £ data for colors and f1oat data for
depth). If you want to read the pixels in their true native per-channel formats, the following steps are necessary:

1. Check the ImageSpec’s channelformats vector. If non-empty, the channels in the file do not all have the
same format.

2. When calling read_scanline, read_scanlines, read_tile, read_tiles, or read_image, pass
a format of TypeUnknown to indicate that you would like the raw data in native per-channel format of the file
written to your data buffer.

For example, the following code fragment will read a 5-channel image to an OpenEXR file, consisting of R/G/B/A
channels in half and a Z channel in float:

auto in = ImagelInput::open (filename);
const ImageSpec &spec = in->spec();

// Allocate enough space
unsigned char *pixels = new unsigned char [spec.image_bytes (true)];

in->read_image (TypeDesc::UNKNOWN, /* use native channel formats #*/
pixels); /* data buffer */

if (spec.channelformats.size() > 0) {
the buffer contains packed data in the native
per—-channel formats

} else {
the buffer contains all data per spec.format

4.2. Advanced Image Input 77

OpenimagelO, Release 2.3.9

4.2.8 Reading “deep” data

Some image file formats (OpenEXR only, at this time) support the concept of “deep” pixels — those containing multiple
samples per pixel (and a potentially differing number of them in each pixel). You can tell an image is “deep” from its
ImageSpec: the deep field will be t rue.

Deep files cannot be read with the usual read_scanline (), read_scanlines (), read_tile(),
read_tiles (), read_image () functions, due to the nature of their variable number of samples per pixel. In-
stead, Imagelnput has three special member functions used only for reading deep data:

bool read_native_deep_scanlines (int subimage, int miplevel,
int ybegin, int yend, int z,
int chbegin, int chend,
DeepData &deepdata);

bool read_native_deep_tiles (int subimage, int miplevel,
int xbegin, int xend, int ybegin int yend,
int zbegin, int zend,
int chbegin, int chend, DeepData &deepdata);

bool read_native_deep_image (int subimage, int miplevel,
DeepData &deepdata);

It is only possible to read “native” data types from deep files; that is, there is no automatic translation into arbitrary data
types as there is for ordinary images. All three of these functions store the resulting deep data in a special DeepData
structure, described in detail in Section Reading “deep” data.

Here is an example of using these methods to read a deep image from a file and print all its values:

auto in = ImageInput::open (filename);
if (! in)

return;
const ImageSpec &spec = in->spec();

if (spec.deep) {
DeepData deepdata;
in->read_native_deep_image (0, 0, deepdata);
int p = 0; // absolute pixel number
for (int y = 0; y < spec.height; ++y) {

for (int x = 0; x < spec.width; ++x, ++p) {
std::cout << "Pixel " << x << ", " << y << ":\n";
if (deepdata.samples(p) == 0)
std::cout << " no samples\n";
else
for (int c = 0; c < spec.nchannels; ++c) |
TypeDesc type = deepdata.channeltype(c);
std::cout << " " << spec.channelnames[c] << ": ";
void xptr = deepdata.pointers|[pxspec.nchannels+c]
for (int s = 0; s < deepdata.samples(p); ++s) {
if (type.basetype == TypeDesc::FLOAT ||
type.basetype == TypeDesc: :HALF)
std::cout << deepdata.deep_value(p, c, s) << ' ';
else if (type.basetype == TypeDesc::UINT32)
std::cout << deepdata.deep_value_uint(p, c, s) << ' ';

}

std::cout << "\n";

(continues on next page)

78 Chapter 4. Imagelnput: Reading Images

OpenimagelO, Release 2.3.9

(continued from previous page)

}

in->close ();

4.2.9 Custom /O proxies (and reading the file from a memory buffer)
Some file format readers allow you to supply a custom I/O proxy object that can allow bypassing the usual file /O
with custom behavior, including the ability to read the file form an in-memory buffer rather than reading from disk.

Only some input format readers support this feature. To find out if a particular file format supports this feature, you
can create an Imagelnput of the right type, and check if it supports the feature name "ioproxy":

auto in = Imagelnput::create (filename);
if (! in || I in->supports ("ioproxy")) {
return;

Imagelnput readers that support "ioproxy" will respond to a special attribute, "oiio:ioproxy", which passes
apointer toaFilesystem: : IOProxy* (see OpenlmagelO’s filesystem.h for this type and its subclasses).
IOProxy is an abstract type, and concrete subclasses include TOFile (which wraps I/O to an open FILE«) and
IOMemReader (which reads input from a block of memory).

Here is an example of using a proxy that reads the “file” from a memory buffer:

const void xbuf = ...; // pointer to memory block
size_t size = ...; // length of memory block
Filesystem: : IOMemReader memreader (buf, size); // I/0 proxy object

auto in = ImagelInput::open ("in.exr", nullptr, &memreader);
in->read_image (...);

in->close();

// That will have read the "file" from the memory buffer

4.2.10 Custom search paths for plugins

Please see Section Global Attributes for discussion about setting the plugin search path via the attribute () func-
tion. For example:

std::string mysearch = "/usr/myapp/lib:S${HOME}/plugins";
OIIO::attribute ("plugin_searchpath", mysearch);
auto in = ImagelInput::open (filename);

4.2. Advanced Image Input 79

OpenimagelO, Release 2.3.9

4.2.11 Error checking

Nearly every Imagelnput API function returns a bool indicating whether the operation succeeded (t rue) or failed
(false). In the case of a failure, the Imagelnput will have saved an error message describing in more detail what
went wrong, and the latest error message is accessible using the Imagelnput method geterror (), which returns the
message as a std: :string.

The exceptions to this rule are static methods such as the static ImageInput::open() and
ImageInput::create (), which return an empty pointer if it could not create an appropriate Imagelnput
(and open it, in the case of open (). In such a case, since no Imagelnput is returned for which you can call its
geterror () function, there exists a global geterror () function (in the OpenImageIO namespace) that
retrieves the latest error message resulting from a call to static open () or create ().

Here is another version of the simple image reading code from Section Image Input Made Simple, but this time it is
fully elaborated with error checking and reporting:

#include <OpenImageIO/imageio.h>
using namespace OIIO;

const char xfilename = "foo.jpg";
int xres, yres, channels;
std::vector<unsigned char> pixels;

auto in = ImagelInput::open (filename);
if (! in) {
std::cerr << "Could not open " << filename
<< ", error = " << 0OIIO::geterror() << "\n";
return;
}
const ImageSpec &spec = in->spec();
xres = spec.width;
yres = spec.height;
channels = spec.nchannels;

pixels.resize (xresxyresxchannels);

if (! in->read_image (TypeDesc::UINT8, &pixels[0])) {
std::cerr << "Could not read pixels from " << filename
<< ", error = " << in->geterror() << "\n";
return;
}
if (! in->close ()) {
std::cerr << "Error closing " << filename
<< ", error = " << in->geterror() << "\n";
return;

80 Chapter 4. Imagelnput: Reading Images

OpenimagelO, Release 2.3.9

4.3 Imagelnput Class Reference

class OIIO::ImageInput
Imagelnput abstracts the reading of an image file in a file format-agnostic manner.

Creating an Imagelntput

static unique_ptr open (const std::string &filename, const ImageSpec *config = nullptr, Filesys-
tem::IOProxy *ioproxy = nullptr)
Create an Imagelnput subclass instance that is able to read the given file and open it, returning a
unique_ptr to the Imagelnput if successful. The unique_ptr is set up with an appropriate deleter
so the Imagelnput will be properly closed and deleted when the unique_ptr goes out of scope or
is reset. If the open fails, return an empty unique_ptr and set an error that can be retrieved by
OIIO::geterror().

The config, if not nullptr, points to an /mageSpec giving hints, requests, or special instructions. /-
agelnput implementations are free to not respond to any such requests, so the default implementation is
just to ignore config.

open () will first try to make an /magelnput corresponding to the format implied by the file extension
(for example, "foo.tif" will try the TIFF plugin), but if one is not found or if the inferred one does not
open the file, every known Imagelnput type will be tried until one is found that will open the file.

Return A unique_ptr that will close and free the Imagelnput when it exits scope or is reset. The
pointer will be empty if the required writer was not able to be created.

Parameters

» filename: The name of the file to open.

29

* config: Optional pointer to an /mageSpec whose metadata contains “configuration hints.

* ioproxy: Optional pointer to an IOProxy to use (not supported by all formats, see
supports ("ioproxy")). The caller retains ownership of the proxy.

static unique_ptr create (string_view filename, bool do_open = false, const ImageSpec *con-
fig = nullptr, Filesystem::10Proxy *ioproxy = nullptr, string_view plu-
gin_searchpath ="")
Create and return an /magelnput implementation that is able to read the given file or format. If do_open
is true (and the filename is the name of a file, not just a format), fully open it if possible (using the
optional config configuration spec, if supplied), otherwise just create the Imagelnput but don’t open it.
The plugin_searchpath parameter is an override of the searchpath. colon-separated list of directories to
search for ImagelO plugin DSO/DLL’s (not a searchpath for the image itself!).

If the £ilename parameter is the name of a file format (such as “openexr”), it will create an Imagelnput
that reads that particular format. If the name is a file extension (such as “exr” or “.exr”), it will guess the
file format from the extension and return that type of Imagelnput.

If filename is a full file name (such as “hawaii.exr”), it will create an /magelnput that reads the format
implied by the file extension (“.tif”’) and try to open the file with that reader. If the file can be opened and
appears to be of the correct type, then that /magelnput (after being closed) will be returned to the caller.
But if it fails (say, because the file type does not match the extension), then every known kind of image
reader will be tried in turn, until one can be found that succeeds in opening that file. The create () file
will fail entirely only if no known image reader type succeeds.

If the caller intends to immediately open the file, then it is often simpler to call static
ImageInput: :open ().

4.3. Imagelnput Class Reference 81

OpenimagelO, Release 2.3.9

Return A unique_ptr that will close and free the /magelnput when it exits scope or is reset. The
pointer will be empty if the required writer was not able to be created.

Parameters
* filename: The name of an image file, or a file extension, or the name of a file format.
* do_open: If true, not only create but also open the file.

* config: Optional pointer to an /mageSpec whose metadata contains “configuration hints” for
the Imagelnput implementation.

* ioproxy: Optional pointer to an IOProxy to use (not supported by all formats, see
supports ("ioproxy")). The caller retains ownership of the proxy. If this is not supplied, it
is still possible to set the proxy with a call to set_proxy () prior to open ().

* plugin_searchpath: An optional colon-separated list of directories to search for Openlm-
agelO plugin DSO/DLL’s.

Reading pixels

Common features of all the read methods:

e The format parameter describes the data type of the data [] buffer. The read methods automatically
convert the data from the data type it is stored in the file into the format of the data buffer. If format
is TypeUnknown it will just copy pixels of file’s native data layout (including, possibly, per-channel data
formats as specified by the /mageSpec’s channel fomats field).

* The stride values describe the layout of the data buffer: xstride is the distance in bytes between
successive pixels within each scanline. ystride is the distance in bytes between successive scanlines.
For volumetric images zst ride is the distance in bytes between successive “volumetric planes”. Strides
set to the special value Aut oSt ride imply contiguous data, i.e.,

xstride = format.size () * nchannels
ystride = xstride * width
zstride = ystride * height

* Any range parameters (such as ybegin and yend) describe a “half open interval”’, meaning that begin
is the first item and end is one past the last item. That means that the number of items is end - begin.

¢ For ordinary 2D (non-volumetric) images, any z or zbegin coordinates should be 0 and any zend should
be 1, indicating that only a single image “plane” exists.

* Some read methods take a channel range [chbegin,chend) to allow reading of a contiguous subset of chan-
nels (chbegin=0, chend=spec.nchannels reads all channels).

» Imagelnput readers are expected to give the appearance of random access in other words, if it can’t ran-
domly seek to the given scanline or tile, it should transparently close, reopen, and sequentially read through
prior scanlines.

¢ All read functions return t rue for success, false for failure (after which a call to geterror () may
retrieve a specific error message).

virtual bool read_scanline (int y, int z, TypeDesc format, void *data, stride_t xstride = Au-

toStride)
Read the scanline that includes pixels (*,y,z) from the “current” subimage and MIP level. The xstride

82 Chapter 4. Imagelnput: Reading Images

OpenimagelO, Release 2.3.9

value gives the distance between successive pixels (in bytes). Strides set to AutoStride imply “con-
tiguous” data.

Note This variety of read_scanline is not re-entrant nor thread-safe. If you require concurrent reads
to the same open I/magelnput, you should use read_scanlines that has the subimage and
miplevel passed explicitly.

Return true upon success, or false upon failure.
Parameters
* y/z: The y & z coordinates of the scanline. For 2D images, z should be 0.
* format: A TypeDesc describing the type of data.
* data: Pointer to the pixel data buffer.
* xstride: The distance in bytes between successive pixels in data (or AutoStride).

inline bool read_scanline (inty, int z, float *data)
Simple read_scanline reads into contiguous float pixels.

virtual bool read_scanlines (int subimage, int miplevel, int ybegin, int yend, int z, int chbegin, int
chend, TypeDesc format, void *data, stride_t xstride = AutoStride,
stride_t ystride = AutoStride)
Read multiple scanlines that include pixels (*,y,z) for all ybegin <=y < yend in the specified subimage and

mip level, into dat a, using the strides given and converting to the requested data format (TypeUnknown
indicates no conversion, just copy native data types). Only channels [chbegin,chend) will be read/copied
(chbegin=0, chend=spec.nchannels reads all channels, yielding equivalent behavior to the simpler variant
of read_scanlines).

This version of read_scanlines, because it passes explicit subimage/miplevel, does not require a separate
call to seek_subimage, and is guaranteed to be thread-safe against other concurrent calls to any of the
read_* methods that take an explicit subimage/miplevel (but not against any other /magelnput methods).

Return true upon success, or false upon failure.

Note This call was changed for OpenlmagelO 2.0 to include the explicit subimage and miplevel param-
eters. The previous versions, which lacked subimage and miplevel parameters (thus were dependent
on a prior call to seek_subimage) are considered deprecated.

Parameters
* subimage: The subimage to read from (starting with 0).
* miplevel: The MIP level to read (O is the highest resolution level).
* ybegin/yend: The y range of the scanlines being passed.
* z: The z coordinate of the scanline.
* chbegin/chend: The channel range to read.
* format: A TypeDesc describing the type of data.
* data: Pointer to the pixel data.

* xstride/ystride: The distance in bytes between successive pixels and scanlines (or
AutoStride).

4.3. Imagelnput Class Reference 83

OpenimagelO, Release 2.3.9

virtual bool read_tile (intx,inty, int z, TypeDesc format, void *data, stride_t xstride = AutoStride,

stride_t ystride = AutoStride, stride_t zstride = AutoStride)
Read the tile whose upper-left origin is (X,y,z) into data [], converting if necessary from the native data

format of the file into the format specified. The stride values give the data spacing of adjacent pixels,
scanlines, and volumetric slices (measured in bytes). Strides set to AutoStride imply ‘contiguous’ data in
the shape of a full tile, i.e.,

xstride = format.size() * spec.nchannels
ystride = xstride * spec.tile_width
zstride = ystride x spec.tile_height

Note This variety of read_tile is not re-entrant nor thread-safe. If you require concurrent reads to the
same open /magelnput, you should use read_tiles () that has the subimage and miplevel
passed explicitly.

Return true upon success, or false upon failure.

Note This call will fail if the image is not tiled, or if (x,y,z) is not the upper left corner coordinates of a
tile.

Parameters
* x/vy/z: The upper left coordinate of the tile being passed.
* format: A TypeDesc describing the type of data.
* data: Pointer to the pixel data.

* xstride/ystride/zstride: The distance in bytes between successive pixels, scanlines,
and image planes (or AutoStride to indicate a “contiguous” single tile).

inline bool read_tile (intx, int y, int z, float *data)

Simple read_tile reads into contiguous float pixels.

virtual bool read_tiles (int subimage, int miplevel, int xbegin, int xend, int ybegin, int yend, int

zbegin, int zend, int chbegin, int chend, TypeDesc format, void *data,
stride_t xstride = AutoStride, stride_t ystride = AutoStride, stride_t

zstride = AutoStride)
Read the block of multiple tiles that include all pixels in

[xbegin, xend) X [ybegin,yend) X [zbegin, zend)

This is analogous to calling read_tile(x,vy, z, ...) foreach tile in turn (but for some file formats,
reading multiple tiles may allow it to read more efficiently or in parallel).

The begin/end pairs must correctly delineate tile boundaries, with the exception that it may also be the end
of the image data if the image resolution is not a whole multiple of the tile size. The stride values give
the data spacing of adjacent pixels, scanlines, and volumetric slices (measured in bytes). Strides set to
AutoStride imply contiguous data in the shape of the [begin,end) region, i.e.,

xstride format.size () » spec.nchannels
ystride = xstride * (xend-xbegin)

zstride = ystride *x (yend-ybegin)

This version of read_tiles, because it passes explicit subimage and miplevel, does not require a separate
call to seek_subimage, and is guaranteed to be thread-safe against other concurrent calls to any of the
read_* methods that take an explicit subimage/miplevel (but not against any other /magelnput methods).

84

Chapter 4. Imagelnput: Reading Images

OpenimagelO, Release 2.3.9

Return

true upon success, or false upon failure.

Note The call will fail if the image is not tiled, or if the pixel ranges do not fall along tile (or image)
boundaries, or if it is not a valid tile range.

Parameters

subimage: The subimage to read from (starting with 0).

miplevel: The MIP level to read (0 is the highest resolution level).
xbegin/xend: The x range of the pixels covered by the group of tiles being read.
ybegin/yend: The y range of the pixels covered by the tiles.

zbegin/zend: The z range of the pixels covered by the tiles (for a 2D image, zbegin=0 and
zend=1).

chbegin/chend: The channel range to read.
format: A TypeDesc describing the type of data.
data: Pointer to the pixel data.

xstride/ystride/zstride: The distance in bytes between successive pixels, scanlines,
and image planes (or AutoStride).

virtual bool read_image (int subimage, int miplevel, int chbegin, int chend, TypeDesc format, void

*data, stride_t xstride = AutoStride, stride_t ystride = AutoStride, stride_t
zstride = AutoStride, ProgressCallback progress_callback = NULL, void
*progress_callback_data = NULL)

Read the entire image of spec.width x spec.height x spec.depth pixels into a buffer with
the given strides and in the desired data format.

Depending on the spec, this will read either all tiles or all scanlines. Assume that data points to a layout in
row-major order.

This version of read_image, because it passes explicit subimage and miplevel, does not require a separate
call to seek_subimage, and is guaranteed to be thread-safe against other concurrent calls to any of the
read_* methods that take an explicit subimage/miplevel (but not against any other /magelnput methods).

Because this may be an expensive operation, a progress callback may be passed. Periodically, it will be
called as follows:

progress_callback (progress_callback_data, float done);

where done gives the portion of the image (between 0.0 and 1.0) that has been written thus far.

Return

true upon success, or false upon failure.

Parameters

subimage: The subimage to read from (starting with 0).
miplevel: The MIP level to read (O is the highest resolution level).
chbegin/chend: The channel range to read.

format: A TypeDesc describing the type of data.

data: Pointer to the pixel data.

xstride/ystride/zstride: The distance in bytes between successive pixels, scanlines,
and image planes (or AutoStride).

4.3. Imagelnput Class Reference 85

OpenimagelO, Release 2.3.9

* progress_callback/progress_callback_data: Optional progress callback.

virtual bool read_native_deep_scanlines (int subimage, int miplevel, int ybegin, int yend, int

' o ' z, int chbegin, int chend, DeepData &deepdata) .
Read deep scanlines containing pixels (*,y,z), for all y in the range [ybegin,yend) into deepdata. This

will fail if it is not a deep file.

Return true upon success, or false upon failure.
Parameters
* subimage: The subimage to read from (starting with 0).
* miplevel: The MIP level to read (0 is the highest resolution level).
* chbegin/chend: The channel range to read.
* ybegin/yend: The y range of the scanlines being passed.
* z: The z coordinate of the scanline.

* deepdata: A DeepData object into which the data for these scanlines will be placed.

virtual bool read_native_deep_tiles (int subimage, int miplevel, int xbegin, int xend, int ybe-

gin, int yend, int zbegin, int zend, int chbegin, int chend,
DeepData &deepdata)
Read into deepdata the block of native deep data tiles that include all pixels and channels specified by

pixel range.

Return true upon success, or false upon failure.

Note The call will fail if the image is not tiled, or if the pixel ranges do not fall along tile (or image)
boundaries, or if it is not a valid tile range.

Parameters
* subimage: The subimage to read from (starting with 0).
* miplevel: The MIP level to read (0 is the highest resolution level).
* xbegin/xend: The x range of the pixels covered by the group of tiles being read.
* ybegin/yend: The y range of the pixels covered by the tiles.

* zbegin/zend: The z range of the pixels covered by the tiles (for a 2D image, zbegin=0 and
zend=1).

* chbegin/chend: The channel range to read.

* deepdata: A DeepData object into which the data for these tiles will be placed.

virtual bool read_native_deep_image (int subimage, int miplevel, DeepData &deepdata)

Read the entire deep data image of spec.width x spec.height x spec.depth pixels, all channels, into
deepdata.

Return true upon success, or false upon failure.
Parameters
* subimage: The subimage to read from (starting with 0).

* miplevel: The MIP level to read (O is the highest resolution level).

86

Chapter 4. Imagelnput: Reading Images

OpenimagelO, Release 2.3.9

* deepdata: A DeepData object into which the data for the image will be placed.

Reading native pixels — implementation overloads

Note read_native_* methods are usually not directly called by user code (except for read_native_deep_* va-
rieties). These are the methods that are overloaded by the /magelnput subclasses that implement the
individual file format readers.

virtual bool read_native_scanline (int subimage, int miplevel, int y, int z, void *data) =0
Read a single scanline (all channels) of native data into contiguous memory.

virtual bool read_native_scanlines (int subimage, int miplevel, int ybegin, int yend, int z, void

*data)
Read a range of scanlines (all channels) of native data into contiguous memory.

virtual bool read_native_scanlines (int subimage, int miplevel, int ybegin, int yend, int z, int
chbegin, int chend, void *data)
Read a range of scanlines (with optionally a subset of channels) of native data into contiguous memory.

virtual bool read_native_tile (int subimage, int miplevel, int x, int y, int z, void *data)
Read a single tile (all channels) of native data into contiguous memory. The base class read_native_tile
fails. A format reader that supports tiles MUST overload this virtual method that reads a single tile (all
channels).

virtual bool read_native_tiles (int subimage, int miplevel, int xbegin, int xend, int ybegin, int

yend, int zbegin, int zend, void *data)
Read multiple tiles (all channels) of native data into contigious memory. A format reader that supports

reading multiple tiles at once (in a way that’s more efficient than reading the tiles one at a time) is advised
(but not required) to overload this virtual method. If an /magelnput subclass does not overload this, the
default implementation here is simply to loop over the tiles, calling the single-tile read_native_tile() for
each one.

virtual bool read_native_tiles (int subimage, int miplevel, int xbegin, int xend, int ybegin, int
vend, int zbegin, int zend, int chbegin, int chend, void *data)
Read multiple tiles (potentially a subset of channels) of native data into contigious memory. A format
reader that supports reading multiple tiles at once, and can handle a channel subset while doing so, is
advised (but not required) to overload this virtual method. If an /magelnput subclass does not overload this,
the default implementation here is simply to loop over the tiles, calling the single-tile read_native_tile()
for each one (and copying carefully to handle the channel subset issues).

Public Types

using unique_ptr = std::unique_ptr</magelnput>
unique_ptr to an /magelnput

typedef std::lock_guard<const /magelnput&> lock_guard
The presence of lock() and unlock() establish an Imagelnput itself as having the BasicLockable concept
and therefore can be used by std::lock_guard.

typedef [magelnput *(*Creator) ()
Call signature of a function that creates and returns an ImageInput .

4.3. Imagelnput Class Reference 87

OpenimagelO, Release 2.3.9

Public Functions

virtual const char *format_name (void) const =0
Return the name of the format implemented by this class.

inline virtual int supports (string_view feature) const
Given the name of a “feature”, return whether this /magelnput supports output of images with the given
properties. Most queries will simply return O for “doesn’t support” and 1 for “supports it,” but it is ac-
ceptable to have queries return other nonzero integers to indicate varying degrees of support or limits (but
should be clearly documented as such).

Feature names that /magelnput implementations are expected to recognize include:

* "arbitrary metadata" : Does this format allow metadata with arbitrary names and types?
e "exif" : Can this format store Exif camera data?

e "joproxy" : Does this format reader support reading from an TOProxy?

e "iptc" : Can this format store IPTC data?

e "procedural" : Can this format create images without reading from a disk file?

e "thumbnail" : Does this format reader support retrieving a reduced resolution copy of the image
via the thumbnail () method?

This list of queries may be extended in future releases. Since this can be done simply by recognizing new
query strings, and does not require any new API entry points, addition of support for new queries does not
break ““link compatibility” with previously-compiled plugins.

virtual bool valid_file (const std::string &filename) const
Return true if the £i1ename names a file of the type for this /magelnput. The implementation will try to
determine this as efficiently as possible, in most cases much less expensively than doing a full open ().
Note that there can be false positives: a file can appear to be of the right type (i.e., valid file()
returning t rue) but still fail a subsequent call to open (), such as if the contents of the file are truncated,
nonsensical, or otherwise corrupted.

Return true upon success, or false upon failure.

virtual bool open (const std::string &name, ImageSpec &newspec) =0
Opens the file with given name and seek to the first subimage in the file. Various file attributes are put
in newspec and a copy is also saved internally to the Tmage Input (retrievable via spec (). From
examining newspec or spec (), you can discern the resolution, if it’s tiled, number of channels, native
data format, and other metadata about the image.

Return true if the file was found and opened successfully.
Parameters
* name: Filename to open.

* newspec: Reference to an /mageSpec in which to deposit a full description of the contents of
the first subimage of the file.

inline virtual bool open (const std::string &name, ImageSpec &newspec, const ImageSpec

&config)
Open file with given name, similar to open (name, newspec). The config is an ImageSpec giving

88 Chapter 4. Imagelnput: Reading Images

OpenimagelO, Release 2.3.9

requests or special instructions. /magelnput implementations are free to not respond to any such requests,
so the default implementation is just to ignore config and call regular open (name, newspec).

Return true if the file was found and opened successfully.
Parameters
* name: Filename to open.

* newspec: Reference to an /mageSpec in which to deposit a full description of the contents of
the first subimage of the file.

* config: An ImageSpec whose metadata contains “configuration hints” for the /magelnput im-
plementation.

inline virtual const /mageSpec &spec (void) const
Return a reference to the image specification of the current subimage/MIPlevel. Note that the con-
tents of the spec are invalid before open () or after close (), and may change with a call to
seek_subimage (). It is thus not thread-safe, since the spec may change if another thread calls
seek_subimage, or any of the read_« () functions that take explicit subimage/miplevel.

virtual /mageSpec spec (int subimage, int miplevel =0)
Return a full copy of the ImageSpec of the designated subimage and MIPlevel. This method is thread-safe,
but it is potentially expensive, due to the work that needs to be done to fully copy an ImageSpec if there
is lots of named metadata to allocate and copy. See also the less expensive spec_dimensions ().
Errors (such as having requested a nonexistent subimage) are indicated by returning an /mageSpec with
format==TypeUnknown.

virtual /mageSpec spec_dimensions (int subimage, int miplevel = 0)
Return a copy of the /mageSpec of the designated subimage and miplevel, but only the dimension and type
fields. Just as with a call to TmageSpec: : copy_dimensions (), neither the channel names nor any
of the arbitrary named metadata will be copied, thus this is a relatively inexpensive operation if you don’t
need that information. It is guaranteed to be thread-safe. Errors (such as having requested a nonexistent
subimage) are indicated by returning an /mageSpec with format==TypeUnknown.

inline virtual bool get_thumbnail (ImageBuf &thumb, int subimage)
Retrieve a reduced-resolution (“thumbnail”) version of the given subimage. It is guaranteed to be thread-
safe.

Return true upon success, false if no thumbnail was available, or if this file format (or reader) does
not support thumbnails.

Note This method was added to OpenlmagelO 2.3.

Parameters
* thumb: A reference to an ImageBuf which will be overwritten with the thumbnail image.
* subimage: The index of the subimage in the file whose thumbnail is to be retrieved.

virtual bool close () =0
Close an open Imagelnput. The call to close() is not strictly necessary if the /magelnput is destroyed
immediately afterwards, since it is required for the destructor to close if the file is still open.

Return true upon success, or false upon failure.

4.3.

Imagelnput Class Reference 89

OpenimagelO, Release 2.3.9

inline virtual int current_subimage (void) const
Returns the index of the subimage that is currently being read. The first subimage (or the only subimage,
if there is just one) is number 0.

inline virtual int current_miplevel (void) const
Returns the index of the MIPmap image that is currently being read. The highest-res MIP level (or the
only level, if there is just one) is number O.

inline virtual bool seek_subimage (int subimage, int miplevel)
Seek to the given subimage and MIP-map level within the open image file. The first subimage of the
file has index 0, the highest- resolution MIP level has index 0. The new subimage’s vital statistics=may
be retrieved by this—>spec (). The reader is expected to give the appearance of random access to
subimages and MIP levels in other words, if it can’t randomly seek to the given subimage/level, it should
transparently close, reopen, and sequentially read through prior subimages and levels.

Return true upon success, or false upon failure. A failure may indicate that no such subimage or
MIP level exists in the file.

inline virtual bool set_ioproxy (Filesystem::IOProxy *ioproxy)
Set an IOProxy for this reader. This must be called prior to open (), and only for readers that support
them (supports ("ioproxy")). The caller retains ownership of the proxy.

Return true for success, false for failure.

bool has_error () const
Is there a pending error message waiting to be retrieved, that resulted from an /magelnput API call made
by the this thread?

Note that any error () calls issued are thread-specific, and the geterror () /has_error () are
expected to be called by the same thread that called whichever API function encountered an error.

std::string geterror (bool clear = true) const
Return the text of all pending error messages issued against this /magelnput by the calling thread, and clear
the pending error message unless clear is false. If no error message is pending, it will return an empty
string.

Note that any error () calls issued are thread-specific, and the geterror () /has_error () are
expected to be called by the same thread that called whichever API function encountered an error.

template<typename ..Args>

inline void error (const char *fint, const Args&... args) const
Error reporting for the plugin implementation: call this with Strutil::format-like arguments. It is not nec-
essary to have the error message contain a trailing newline. Use with caution! Some day this will change
to be fmt-like rather than printf-like.

template<typename ..Args>

inline void errorf (const char *fint, const Args&... args) const
Error reporting for the plugin implementation: call this with printf-like arguments. It is not necessary to
have the error message contain a trailing newline.

template<typename ...Args>

inline void errorfmt (const char *fimt, const Args&... args) const
Error reporting for the plugin implementation: call this with std::format-like arguments. It is not necessary
to have the error message contain a trailing newline.

void threads (int n)
Set the threading policy for this /magelnput, controlling the maximum amount of parallelizing thread

90

Chapter 4. Imagelnput: Reading Images

OpenimagelO, Release 2.3.9

“fan-out” that might occur during large read operations. The default of 0 means that the global
attribute ("threads") value should be used (which itself defaults to using as many threads as
cores; see Section Global Attributes_).

The main reason to change this value is to set it to 1 to indicate that the calling thread should do all the
work rather than spawning new threads. That is probably the desired behavior in situations where the
calling application has already spawned multiple worker threads.

int threads () const
Retrieve the current thread-spawning policy.

See threads (int)

void lock () const
There is a (hidden) internal recursive mutex to each Imagelnput that can be used by the II to enforce thread
safety. This is exposed via the obvious lock()/unlock()/try_lock() semantics.

4.3. Imagelnput Class Reference 91

OpenimagelO, Release 2.3.9

92 Chapter 4. Imagelnput: Reading Images

CHAPTER
FIVE

WRITING IMAGEIO PLUGINS

5.1 Plugin Introduction

As explained in Chapters /magelnput: Reading Images and ImageQutput: Writing Images, the ImagelO library does
not know how to read or write any particular image formats, but rather relies on plugins located and loaded dynamically
at run-time. This set of plugins, and therefore the set of image file formats that OpenlmagelO or its clients can read
and write, is extensible without needing to modify OpenImagelO itself.

This chapter explains how to write your own OpenlmagelO plugins. We will first explain separately how to write
image file readers and writers, then tie up the loose ends of how to build the plugins themselves.

5.2 Image Reader Plugins

A plugin that reads a particular image file format must implement a subclass of Imagelnput (described in Chapter
Imagelnput: Reading Images). This is actually very straightforward and consists of the following steps, which we will
illustrate with a real-world example of writing a JPEG/JFIF plug-in.

1. Read the base class definition from imageio.h. It may also be helpful to enclose the contents of your plugin
in the same namespace that the OpenlmagelO library uses:

#include <OpenImageIO/imageio.h>
OITIO_PLUGIN_NAMESPACE_BEGIN

// ... everything else ...

OITO_PLUGIN_NAMESPACE_END

2. Declare these public items:

a. An integer called name_imageio_version that identifies the version of the Im-
agelO protocol implemented by the plugin, defined in imageio.h as the constant
OIIO_PLUGIN_VERSION. This allows the library to be sure it is not loading a plugin that
was compiled against an incompatible version of OpenlmagelO.

b. An function named name_imageio_library_version that identifies the underlying de-
pendent library that is responsible for reading or writing the format (it may return nullptr to
indicate that there is no dependent library being used for this format).

c. A function named name_input_imageio_create that takes no arguments and returns an
ImageInput »* constructed from a new instance of your Imagelnput subclass and a deleter.
(Note that name is the name of your format, and must match the name of the plugin itself.)

93

OpenimagelO, Release 2.3.9

d. An array of char =« called name_input_extensions that contains the list of file exten-
sions that are likely to indicate a file of the right format. The list is terminated by a nullptr.

All of these items must be inside an extern "C" block in order to avoid name mangling
by the C++ compiler, and we provide handy macros OIIO_PLUGIN_EXPORTS_BEGIN and
OIIO_PLUGIN_EXPORTS_END to make this easy. Depending on your compiler, you may need
to use special commands to dictate that the symbols will be exported in the DSO; we provide a
special 0TI TO_EXPORT macro for this purpose, defined in export .h.

Putting this all together, we get the following for our JPEG example:

OITIO_PLUGIN_EXPORTS_BEGIN
OIIO_EXPORT int jpeg_imageio_version = OIIO_PLUGIN_VERSION;
OIIO_EXPORT Imagelnput =*jpeg_input_imageio_create () {
return new Jpglnput;
}
OIIO_EXPORT const char *jpeg_input_extensions|[] = {
"Jpg", " "jpeg", "jif", "jfif", "Jfi", nullptr

jpe™,
}i
OIIO_EXPORT const char* jpeg_imageio_library_version () {
#define STRINGIZEZ (a) #a
#define STRINGIZE (a) STRINGIZEZ (a)
#ifdef LIBJPEG _TURBO_VERSION
return "jpeg-turbo " STRINGIZE (LIBJPEG_TURBO_VERSION) ;
#else
return "jpeglib " STRINGIZE (JPEG_LIB_VERSION_MAJOR) "."
STRINGIZE (JPEG_LIB_VERSION_MINOR) ;
#endif
}
OIIO_PLUGIN_EXPORTS_END

3. The definition and implementation of an ImageInput subclass for this file format. It must publicly inherit Im-
agelnput, and must overload the following methods which are “pure virtual” in the Imagelnput base class:

a.

format_name () should return the name of the format, which ought to match the name of the plugin
and by convention is strictly lower-case and contains no whitespace.

open () should open the file and return true, or should return false if unable to do so (including if the file
was found but turned out not to be in the format that your plugin is trying to implement).

close () should close the file, if open.

read_native_scanline () should read a single scanline from the file into the address provided,
uncompressing it but keeping it in its naive data format without any translation.

. The virtual destructor, which should close () if the file is still open, addition to performing any other

tear-down activities.

Additionally, your ImageInput subclass may optionally choose to overload any of the following methods, which
are defined in the Imagelnput base class and only need to be overloaded if the default behavior is not appropriate
for your plugin:

f. supports (), only if your format supports any of the optional features described in the section describing

ImageInput: :supports.

valid_file (), if your format has a way to determine if a file is of the given format in a way that is less
expensive than a full open ().

seek_subimage (), only if your format supports reading multiple subimages within a single file.

read_native_scanlines (), only if your format has a speed advantage when reading multiple
scanlines at once. If you do not supply this function, the default implementation will simply call

94

Chapter 5. Writing ImagelO Plugins

OpenimagelO, Release 2.3.9

read_scanline () for each scanline in the range.
j. read_native_tile (), only if your format supports reading tiled images.

k. read_native_tiles (), only if your format supports reading tiled images and there is a speed advan-
tage when reading multiple tiles at once. If you do not supply this function, the default implementation
will simply call read_native_tile () for each tile in the range.

I. Channel subset'' versions of '‘read_native_scanlines() and/or
read_native_tiles (), only if your format has a more efficient means of reading a sub-
set of channels. If you do not supply these methods, the default implementation will simply use
read_native_scanlines () or read_native_tiles () to read into a temporary all-channel
buffer and then copy the channel subset into the user’s buffer.

m. read_native_deep_scanlines () and/or read_native_deep_tiles (), only if your format
supports “deep” data images.

Here is how the class definition looks for our JPEG example. Note that the JPEG/JFIF file format does not
support multiple subimages or tiled images.

class JpgInput final : public Imagelnput {

public:
JpgInput () { init(); 1}
virtual ~JpgInput () { close(); }

virtual const char * format_name (void) const override { return "jpeg"; }
virtual bool open (const std::string &name, ImageSpec &spec) override;
virtual bool read_native_scanline (int y, int 2z, wvoid xdata) override;
virtual bool close () override;

private:
FILE »m_fd;
bool m_first_scanline;
struct Jjpeg decompress_struct m_cinfo;
struct jpeg error mgr m_jerr;

void init () { m_fd = NULL; }
bi

Your subclass implementation of open (), close (), and read_native_scanline () are the heart of an Im-
agelnput implementation. (Also read_native_tile () and seek_subimage (), for those image formats that
support them.)

The remainder of this section simply lists the full implementation of our JPEG reader, which relies heavily on the open
source jpeg—6b library to perform the actual JPEG decoding.

// Copyright 2008-present Contributors to the OpenImageIO project.
// SPDX-License-Identifier: BSD-3-Clause
// https://github.com/OpenImageIO/oiio/blob/master/LICENSE.md

#include <algorithm>
#include <cassert>
#include <cstdio>

#include <OpenImageIO/filesystem.h>
#include <OpenImageIO/fmath.h>
#include <OpenImageIO/imageio.h>
#include <OpenImagelIO/tiffutils.h>

#include "jpeg_pvt.h"

(continues on next page)

5.2. Image Reader Plugins 95

OpenimagelO, Release 2.3.9

(continued from previous page)

OITO_PLUGIN_NAMESPACE_BEGIN

// N.B. The class definition for Jpglnput is in jpeg _pvt.h.

// Export version number and create function symbols
OIIO_PLUGIN_EXPORTS_BEGIN

OITIO_EXPORT int jpeg_imageio_version = OIIO_PLUGIN_VERSION;

OITIO_EXPORT const charx
Jjpeg_imageio_library_version ()
{
#define STRINGIZEZ (a) #a
#define STRINGIZE (a) STRINGIZEZ (a)
#ifdef LIBJPEG_TURBO_VERSION
return "jpeg-turbo " STRINGIZE (LIBJPEG_TURBO_VERSION) "/Jp" STRINGIZE (
JPEG_LIB_VERSION) ;

#else
return "‘jpeglib " STRINGIZE (JPEG_LIB_VERSION_MAJOR) "." STRINGIZE (
JPEG_LIB_VERSION_MINOR) ;
#endif

}

OITIO_EXPORT ImageInputx*
jpeg_input_imageio_create ()
{

return new Jpglnput;

OIIO_EXPORT const charx Jjpeg_input_extensions](]
o { lljpg"’ ije"’ "jpegH, lljif", lljfifll, "jfill, nullptr },.

OITIO_PLUGIN_EXPORTS_END

static const uint8_t JPEG_MAGICl = 0Oxff;
static const uint8_t JPEG_MAGIC2 = 0xd8;

// For explanations of the error handling, see the "example.c" in the
// libjpeg distribution.

static void

my_error_exit (j_common_ptr cinfo)

{
/* cinfo->err really points to a my_error_mgr struct, so coerce pointer */
JpgInput: :my_error_ptr myerr = (Jpglnput::my_error_ptr)cinfo->err;

/+ Always display the message. */

/#* We could postpone this until after returning, 1if we chose. x/
// (*cinfo->err—>output_message) (cinfo);
myerr—>jpginput->jpegerror (myerr, true);

/# Return control to the setjmp point =/

(continues on next page)

96 Chapter 5. Writing ImagelO Plugins

OpenimagelO, Release 2.3.9

(continued from previous page)

longjmp (myerr—>set jmp_buffer, 1);

static void
my_output_message (j_common_ptr cinfo)
{

JpgInput:::my_error_ptr myerr = (Jpglnput::my_error_ptr)cinfo->err;

// Create the message

char buffer [JMSG_LENGTH_MAX];
(#cinfo->err—->format_message) (cinfo, buffer);
myerr—>jpginput->jpegerror (myerr, false);

// This function is called only for non-fatal problems, so we don't
// need to do the longjmp.
// longjmp (myerr—>set jmp_buffer, 1);

static std::string

comp_info_to_attr (const jpeg_decompress_structé& cinfo)

{
// Compare the current 6 samples with our known definitions
// to determine the corresponding subsampling attr
std::vector<int> comp;
comp.push_back (cinfo.comp_info [0
comp.push_back (cinfo.comp_info [0
comp.push_back (cinfo.comp_info[l
comp.push_back (cinfo.comp_info[l
comp.push_back (cinfo.comp_infol[2
comp.push_back (cinfo.comp_info[2
size_t size = comp.size();

’

.h_samp_factor

’

)
.v_samp_factor)
.h_samp_factor);

)
)
)

’

.v_samp_factor
.h_samp_factor

’

’

1
]
1
1
]
] .v_samp_factor

if (std::equal (JPEG_444_COMP, JPEG_444_COMP + size, comp.begin()))
return JPEG_444_STR;

else if (std::equal (JPEG_422_COMP, JPEG_422_COMP + size, comp.begin()))
return JPEG_422_STR;

else if (std::equal (JPEG_420_COMP, JPEG_420_COMP + size, comp.begin()))
return JPEG_420_STR;

else if (std::equal (JPEG_411_COMP, JPEG_411_COMP + size, comp.begin()))
return JPEG_411_STR;

return "";

void
JpglInput: :jpegerror (my_error_ptr /#myerr+/, bool fatal)
{
// Send the error message to the ImagelInput
char errbuf [JMSG_LENGTH_MAX];
(#»m_cinfo.err->format_message) ((j_common_ptr)&m_cinfo, errbuf);
errorf ("JPEG error: %s (\"%s\")", errbuf, filename());

(continues on next page)

5.2. Image Reader Plugins 97

OpenimagelO, Release 2.3.9

(continued from previous page)

// Shut it down and clean it up

if (fatal) |
m_fatalerr = true;
close();
m_fatalerr = true;
}
}
bool

JpgInput::valid_file(const std::stringé& filename,

{

// because close () will reset it

Filesystem: :IOProxy* 1i0) const

// Check magic number to assure this is a JPEG file

uint8_t magic([2] = { 0, 0 };
bool ok = true;
if (io) {

ok = (io->pread(magic, sizeof (magic), 0) == sizeof (magic));
} else {

FILE+«+ fd = Filesystem::fopen(filename, "rb");

if (!fd)

return false;
ok = (fread(magic, sizeof (magic), 1, fd) == 1);

fclose (fd);

if (magic[0] != JPEG_MAGIC1

ok false;

magic[1]

}

return ok;

bool
JpgInput: :open(const std::string& name,
const ImageSpecé& config)

!= JPEG_MAGIC2) {

ImageSpecé& newspec,

Typelnt);

TypeDesc: :PTR) ;

auto p = config.find_attribute (" _Jjpeg:raw",
m_raw = p && *(intx)p->datal();
P = config.find_attribute("oiio:ioproxy",
if (p)

m_io = p->get<Filesystem: :IOProxyx>();

m_config.reset (new ImageSpec (confiqg));

return open (name, newspec);

bool
JpgInput: :open(const std::string& name,

{

m_filename

name;
if (m_io) {

// If an IOProxy was passed, it had

// save config spec

ImageSpecé& newspec)

better be a File or a

(continues on next page)

98

Chapter 5. Writing ImagelO Plugins

OpenlmagelO, Release 2.3.9

(continued from previous page)

// MemReader, that's all we know how to use with jpeg.
std::string proxytype = m_io->proxytype();
if (proxytype != "file" && proxytype != "memreader") {
errorf ("JPEG reader can't handle proxy type %s", proxytype);
return false;
}
} else {
// If no proxy was supplied, create a file reader
m_io = new Filesystem::IOFile (name, Filesystem::IOProxy::Mode: :Read);
m_local_io.reset (m_1io);
}
if (!m_io || m_io-—>mode() != Filesystem::IOProxy::Mode: :Read) {
errorf ("Could not open file \"%s\"", name);
return false;

// Check magic number to assure this is a JPEG file

uint8_t magic([2] = { 0, 0 };

if (m_io->pread(magic, sizeof (magic), 0) != sizeof (magic)) {
errorf ("Empty file \"%s\"", name);
close_file();
return false;

if (magic[0] != JPEG_MAGICl || magic[l] != JPEG_MAGIC2) {
close_file();
errorf (

"\"$s\" is not a JPEG file, magic number doesn't match (was 0x%x%x)",
name, int (magic([0]), int (magic[l]));
return false;

// Set up the normal JPEG error routines, then override error_exit and
// output_message so we intercept all the errors.
m_cinfo.err = Jpeg_std_error ((jpeg_error_mgrx)&m_jerr);
m_Jjerr.pub.error_exit = my_error_exit;
m_Jjerr.pub.output_message = my_output_message;
if (setjmp(m_jerr.setjmp_buffer)) {
// Jump to here if there's a libjpeg internal error
// Prevent memory leaks, see example.c in jpeg distribution
jpeg_destroy_decompress (&ém_cinfo);
close_file();
return false;

// initialize decompressor

Jjpeg_create_decompress (&m_cinfo) ;

m_decomp_create = true;

// specify the data source

if (!strcmp(m_io->proxytype(), "file")) |
auto fd = ((Filesystem::IOFilex)m_io)—->handle();
jpeg_stdio_src(&m_cinfo, £fd);

} else {
auto buffer = ((Filesystem::IOMemReaderx)m_io)->buffer();
Jjpeg_mem_src (&m_cinfo, const_cast<unsigned charx> (buffer.data()),

buffer.size());

(continues on next page)

5.2. Image Reader Plugins 99

OpenimagelO, Release 2.3.9

(continued from previous page)

// Request saving of EXIF and other special tags for later spelunking
for (int mark = 0; mark < 16; ++mark)

jpeg_save_markers (&m_cinfo, JPEG_APPO + mark, Oxffff);
jpeg_save_markers (¢m_cinfo, JPEG_COM, Oxffff); // comment marker

// read the file parameters

if (jpeg_read_header (ém_cinfo, FALSE) != JPEG_HEADER_OK || m_fatalerr) {
errorf ("Bad JPEG header for \"%s\"", filename());
return false;

int nchannels = m_cinfo.num_components;

if (m_cinfo.jpeg_color_space == JCS_CMYK
|| m_cinfo.jpeg_color_space == JCS_YCCK) {
// CMYK jpegs get converted by us to RGB
m_cinfo.out_color_space = JCS_CMYK; // pre-convert YCbCrK->CMYK
nchannels = 3;
m_cmyk true;

if (m_raw)
m_coeffs = jpeg_read _coefficients (&ém_cinfo);
else
jpeg_start_decompress (&¢m_cinfo); // start working
if (m_fatalerr)
return false;
m_next_scanline = 0; // next scanline we'll read

m_spec = ImageSpec (m_cinfo.output_width, m_cinfo.output_height, nchannels,
TypeDesc: :UINTS8) ;

// Assume JPEG is in sSRGB unless the Exif or XMP tags say otherwise.
m_spec.attribute("oiio:ColorSpace", "sRGB");

if (m_cinfo.jpeg_color_space == JCS_CMYK)
m_spec.attribute (" Jjpeg:ColorSpace", "CMYK");

else if (m_cinfo.jpeg_color_space == JCS_YCCK)
m_spec.attribute (" jpeg:ColorSpace", "YCbCrK");

// If the chroma subsampling is detected and matches something
// we expect, then set an attribute so that it can be preserved
// 1in future operations.
std::string subsampling = comp_info_to_attr (m_cinfo);
if (!subsampling.empty())

m_spec.attribute (JPEG_SUBSAMPLING_ATTR, subsampling);

for (jpeg_saved_marker_ptr m = m_cinfo.marker_list; m; m = m->next) {
if (m->marker == (JPEG_APPO + 1)
&& !strcmp ((const charx)m->data, "Exif")) {
// The block starts with "Exif\0\0", so skip 6 bytes to get
// to the start of the actual Exif data TIFF directory

decode_exif (string_view((charx)m->data + 6, m->data_length - 6),
m_spec) ;
} else if (m->marker == (JPEG_APPO + 1)

&& !strcmp ((const charx)m->data,

(continues on next page)

100

Chapter 5. Writing ImagelO Plugins

OpenlmagelO, Release 2.3.9

(continued from previous page)

"http://ns.adobe.com/xap/1.0/")) {
std::string xml ((const charx)m->data, m->data_length);
decode_xmp (xml, m_spec);
} else if (m-—>marker == (JPEG_APPO + 13)
&& !strcmp ((const charx)m->data, "Photoshop 3.0"))

jpeg_decode_iptc ((unsigned charx)m->data);
else if (m-—>marker == JPEG_COM) {

if (!m_spec.find_attribute ("ImageDescription"”, TypeDesc::STRING))

m_spec.attribute ("ImageDescription",
std::string((const charx)m->data,
m->data_length));

// Handle density/pixelaspect. We need to do this AFTER the exif is
// decoded, 1in case 1t contains useful information.
float xdensity = m_spec.get_float_attribute ("XResolution");
float ydensity = m_spec.get_float_attribute ("YResolution");
if (!xdensity || !ydensity) {
xdensity = float (m_cinfo.X_density);
ydensity = float (m_cinfo.Y_density);
if (xdensity && ydensity) {
m_spec.attribute ("XResolution", xdensity);
m_spec.attribute ("YResolution", ydensity);

}
if (xdensity && ydensity) {
float aspect = ydensity / xdensity;
if (aspect != 1.0f)
m_spec.attribute ("PixelAspectRatio", aspect);
switch (m_cinfo.density_unit) {
case 0: m_spec.attribute ("ResolutionUnit", "none"); break;
case 1: m_spec.attribute ("ResolutionUnit", "in"); break;
case 2: m_spec.attribute ("ResolutionUnit", "cm"); break;

}

read_icc_profile(&m_cinfo, m_spec); /// try to read icc profile

newspec = m_spec;
return true;

bool
JpgInput::read_icc_profile(j_decompress_ptr cinfo, ImageSpecs& spec)
{
int num_markers = 0;
std::vector<unsigned char> icc_buf;
unsigned int total_length = 0;
const int MAX_SEQ_NO = 255;
unsigned char marker_present
[MAX_SEQ_NO
+ 11; // one extra is used to store the flag if marker is found, set to one,

—1f marker 1is found

unsigned int data_length[MAX_SEQ _NO + 1]; // store the size of each marker
(continues on next page)

5.2. Image Reader Plugins 101

OpenimagelO, Release 2.3.9

(continued from previous page)

unsigned int data_offset [MAX_SEQ_NO + 1]; // store the offset of each marker
memset (marker_present, 0, (MAX_SEQ _NO + 1));

for (jpeg_saved_marker_ptr m = cinfo->marker_list; m; m = m->next) {
if (m->marker == (JPEG_APPO + 2)
&& !strcmp ((const charx)m->data, "ICC_PROFILE")) {
if (num_markers == 0)
num_markers = GETJOCTET (m->datal[l3]);
else if (num_markers != GETJOCTET (m—->data[13]))
return false;
int seq_no = GETJOCTET (m->datall2]);

if (segq_no <= 0 || seg_no > num_markers)
return false;
if (marker_present[seq_no]) // duplicate marker
return false;
marker_present [seq no] = 1; // flag found marker
data_length[seqg_no] = m->data_length - ICC_HEADER_SIZE;
}
}
if (num_markers == 0)

return false;

// checking for missing markers

for (int seg_no = 1; seg_no <= num_markers; seq_no++) {
if (marker_present[seq_no] == 0)
return false; // missing sequence number
data_offset[seg_no] = total_length;

total_length += data_length[seqg_no];

if (total_length == 0)
return false; // found only empty markers

icc_buf.resize(total_length » sizeof (JOCTET));

// and fill it 1in
for (jpeg_saved_marker_ptr m = cinfo->marker_list; m; m = m->next) {
if (m->marker == (JPEG_APPO + 2)
&& !strcmp ((const charx)m->data, "ICC_PROFILE")) {
int seq_no = GETJOCTET (m—>datall2]);
memcpy (&icc_buf[0] + data_offset[seqg_no], m->data + ICC_HEADER_SIZE,
data_length[seqg_no]);

}
spec.attribute (ICC_PROFILE_ATTR, TypeDesc (TypeDesc::UINT8, total_length),

&icc_buf[0]);
return true;

static void
cmyk_to_rgb(int n, const unsigned charx cmyk, size_t cmyk_stride,
unsigned charx rgb, size_t rgb_stride)

for (; n; --n, cmyk += cmyk_stride, rgb += rgb_stride) {
// JPEG seems to store CMYK as 1-x

(continues on next page)

102 Chapter 5. Writing ImagelO Plugins

OpenlmagelO, Release 2.3.9

(continued from previous page)

bool
Jpgl

float C = convert_type<unsigned char, float> (cmyk[0]);
float M = convert_type<unsigned char, float> (cmyk[1l]);
float Y = convert_type<unsigned char, float> (cmyk[2]);
float K = convert_type<unsigned char, float> (cmyk[3]);
float R = C * K;

float G = M * K;

float B = Y * K;

rgb[0] = convert_type<float, unsigned char> (R);
rgb[1l] = convert_type<float, unsigned char> (G);
rgb[2] = convert_type<float, unsigned char> (B);

nput::read_native_scanline (int subimage, int miplevel, int y, int /xzx/,
voidx data)

if (!seek_subimage (subimage, miplevel))
return false;
if (m_raw)
return false;
if (y < 0 || yv >= (int)m_cinfo.output_height) // out of range scanline
return false;
if (m_next_scanline > y) {
// User 1is trying to read an earlier scanline than the one we're
// up to. Easy fix: close the file and re-open.
// Don't forget to save and restore any configuration settings.
ImageSpec configsave;
if (m_config)
configsave = *m_config;
ImageSpec dummyspec;
int subimage = current_subimage();
if (!close() || 'open(m_filename, dummyspec, configsave)
| | !seek_subimage (subimage, 0))
return false; // Somehow, the re-open failed
OIIO_DASSERT (m_next_scanline == 0 && current_subimage () == subimage);

// Set up our custom error handler

if (setjmp(m_jerr.setjmp_buffer)) {
// Jump to here if there's a libjpeg internal error
return false;

void* readdata = data;
if (m_cmyk) {
// If the file's data is CMYK, read into a 4-channel buffer, then
// we'll have to convert.
m_cmyk_buf.resize (m_spec.width % 4);
readdata = &m_cmyk_buf[0];
OIIO_DASSERT (m_spec.nchannels == 3);

for (; m_next_scanline <= y; ++m_next_scanline) {
// Keep reading until we've read the scanline we really need

(continues on next page)

5.2.

Image Reader Plugins 103

OpenimagelO, Release 2.3.9

(continued from previous page)

bool

if (jpeg_read_scanlines (&m_cinfo, (JSAMPLE««)&readdata, 1) != 1
|| m_fatalerr) {
errorf ("JPEG failed scanline read (\"%s\")", filename());

return false;

if (m_cmyk)
cmyk_to_rgb (m_spec.width, (unsigned charx)readdata, 4,
(unsigned charx)data, 3);

return true;

JpgInput::close ()

{

if (m_io) {
// unnecessary? jpeg_abort_decompress (&m_cinfo);
if (m_decomp_create)
jpeg_destroy_decompress (&m_cinfo) ;
m_decomp_create = false;
close_file();
}
init(); // Reset to initial state
return true;

void
JpgInput::jpeg_decode_iptc (const unsigned charx buf)

{

// APP13 blob doesn't have to be IPTC info. Look for the IPTC marker,
// which is the string "Photoshop 3.0" followed by a null character.
if (strcmp((const charx)buf, "Photoshop 3.0"))

return;
buf += strlen("Photoshop 3.0") + 1;

// Next are the 4 bytes "8BIM"

if (strncmp((const charx)buf, "8BIM", 4))
return;

buf += 4;

// Next two bytes are the segment type, in big endian.
// We expect 1028 to indicate IPTC data block.

if (((buf[0] << 8) + buf[l]) != 1028)
return;
buf += 2;

// Next are 4 bytes of 0 padding, just skip it.
buf += 4;

// Next is 2 byte (big endian) giving the size of the segment
int segmentsize = (buf[0] << 8) + buf[l];

(continues on next page)

104

Chapter 5. Writing ImagelO Plugins

OpenimagelO, Release 2.3.9

(continued from previous page)

buf += 2;

decode_iptc_iim(buf, segmentsize, m_spec);

OIIO_PLUGIN_NAMESPACE_END

5.3 Image Writers

A plugin that writes a particular image file format must implement a subclass of ImageOutput (described in Chapter
ImageOutput: Writing Images). This is actually very straightforward and consists of the following steps, which we
will illustrate with a real-world example of writing a JPEG/JFIF plug-in.

1. Read the base class definition from imageio.h, just as with an image reader (see Section /mage Reader
Plugins).

2. Declare four public items:

a. Aninteger called name_imageio_version that identifies the version of the ImagelO protocol imple-
mented by the plugin, defined in imageio.h as the constant OITO_PLUGIN_VERSION. This allows
the library to be sure it is not loading a plugin that was compiled against an incompatible version of Open-
ImagelO. Note that if your plugin has both a reader and writer and they are compiled as separate modules
(C++ source files), you don’t want to declare this in both modules; either one is fine.

b. A function named name_output_imageio_create that takes no arguments and returns an
ImageOutput = constructed from a new instance of your ImageOutput subclass and a deleter. (Note
that name is the name of your format, and must match the name of the plugin itself.)

c. An array of char = called name_output_extensions that contains the list of file extensions that
are likely to indicate a file of the right format. The list is terminated by a nul 1pt r pointer.

All of these items must be inside an extern "C" block in order to avoid name mangling by the C++ compiler,
and we provide handy macros OIIO_PLUGIN_EXPORTS_BEGIN and OIIO_PLUGIN_EXPORTS_END to
mamke this easy. Depending on your compiler, you may need to use special commands to dictate that the
symbols will be exported in the DSO; we provide a special 0OITO_EXPORT macro for this purpose, defined in
export.h.

Putting this all together, we get the following for our JPEG example:

OITO_PLUGIN_EXPORTS_BEGIN
OIIO_EXPORT int jpeg_imageio_version = OIIO_PLUGIN_VERSION;
OITIO_EXPORT ImageOutput =*jpeg_output_imageio_create () {
return new JpgOutput;
}
OIIO_EXPORT const char *jpeg_input_extensions[] = {
"Jjpg", "jpe", "Jpeg", nullptr
bi
OITIO_PLUGIN_EXPORTS_END

3. The definition and implementation of an ImageOutput subclass for this file format. It must publicly inherit
ImageOutput, and must overload the following methods which are “pure virtual” in the ImageOutput base class:

a. format_name () should return the name of the format, which ought to match the name of the plugin
and by convention is strictly lower-case and contains no whitespace.

5.3. Image Writers 105

OpenimagelO, Release 2.3.9

b. supports () should return true if its argument names a feature supported by your format
plugin, false if it names a feature not supported by your plugin. See the description of
ImageOutput: : supports () for the list of feature names.

c. open () should open the file and return true, or should return false if unable to do so (including if the file
was found but turned out not to be in the format that your plugin is trying to implement).

d. close () should close the file, if open.

e. write_scanline () should write a single scanline to the file, translating from internal to native data
format and handling strides properly.

f. The virtual destructor, which should close () if the file is still open, addition to performing any other
tear-down activities.

Additionally, your ImageOutput subclass may optionally choose to overload any of the following methods,
which are defined in the ImageOutput base class and only need to be overloaded if the default behavior is not
appropriate for your plugin:

g. write_scanlines (), only if your format supports writing scanlines and you can get a performance
improvement when outputting multiple scanlines at once. If you don’t supply write_scanlines (),
the default implementation will simply call write_scanline () separately for each scanline in the
range.

h. write_tile (), only if your format supports writing tiled images.

i. write_tiles (), only if your format supports writing tiled images and you can get a performance
improvement when outputting multiple tiles at once. If you don’t supply write_tiles (), the default
implementation will simply call write_tile () separately for each tile in the range.

j- write_rectangle (), only if your format supports writing arbitrary rectangles.

k. write_image (), only if you have a more clever method of doing so than the default implementation
that calls write_scanline () orwrite_tile () repeatedly.

l. write_deep_scanlines () and/or write_deep_tiles (), only if your format supports “deep”
data images.

It is not strictly required, but certainly appreciated, if a file format does not support tiles, to nonetheless
accept an ImageSpec that specifies tile sizes by allocating a full-image buffer in open (), providing an
implementation of write_tile () that copies the tile of data to the right spots in the buffer, and having
close () thencallwrite_scanlines () to process the buffer now that the image has been fully sent.

Here is how the class definition looks for our JPEG example. Note that the JPEG/JFIF file format does
not support multiple subimages or tiled images.

class JpgOutput final : public ImageOutput {

public:
JpgOutput () { init (); }
virtual ~JpgOutput () { close(); }

virtual const char * format_name (void) const override { return "jpeg"; }

virtual int supports (string_view property) const override { return
—~false; }

virtual bool open (const std::string &name, const ImageSpec &spec,

bool append=false) override;
virtual bool write_scanline (int y, int 2z, TypeDesc format,
const void *data, stride_t xstride)

—override;

bool close ();
private:

FILE xm_fd;

(continues on next page)

106

Chapter 5. Writing ImagelO Plugins

OpenimagelO, Release 2.3.9

(continued from previous page)

std: :vector<unsigned char> m_scratch;
struct jpeg compress_struct m_cinfo;
struct jpeg error mgr m_jerr;

void init () { m_fd = NULL; }
}i

Your subclass implementation of open (), close (), and write_scanline () are the heart of an ImageOutput
implementation. (Also write_tile (), for those image formats that support tiled output.)

An ImageOutput implementation must properly handle all data formats and strides passed to write_scanline ()
orwrite_tile (), unlike an Imagelnput implementation, which only needs to read scanlines or tiles in their native
format and then have the super-class handle the translation. But don’t worry, all the heavy lifting can be accomplished
with the following helper functions provided as protected member functions of ImageOutput that convert a scanline,
tile, or rectangular array of values from one format to the native format(s) of the file.

const void *to_native_scanline (TypeDesc format, const void *data, stride_t xstride,
std::vector<unsigned char> &scratch, unsigned int dither = 0,
int yorigin = 0, int zorigin = 0)
Convert a full scanline of pixels (pointed to by data with the given format and strides into contiguous pixels
in the native format (described by the ImageSpec returned by the spec () member function). The location of
the newly converted data is returned, which may either be the original data itself if no data conversion was
necessary and the requested layout was contiguous (thereby avoiding unnecessary memory copies), or may point
into memory allocated within the scratch vector passed by the user. In either case, the caller doesn’t need to
worry about thread safety or freeing any allocated memory (other than eventually destroying the scratch vector).

const void *to_native_tile (TypeDesc format, const void *data, stride_t xstride, stride_t ystride,
stride_t zstride, std::vector<unsigned char> &scratch, unsigned int dither
= 0, int xorigin = 0, int yorigin = 0, int zorigin = 0)
Convert a full tile of pixels (pointed to by data with the given format and strides into contiguous pixels in
the native format (described by the ImageSpec returned by the spec () member function). The location of
the newly converted data is returned, which may either be the original data itself if no data conversion was
necessary and the requested layout was contiguous (thereby avoiding unnecessary memory copies), or may point
into memory allocated within the scratch vector passed by the user. In either case, the caller doesn’t need to
worry about thread safety or freeing any allocated memory (other than eventually destroying the scratch vector).

const void *to_native_rectangle (int xbegin, int xend, int ybegin, int yend, int zbegin, int zend, Type-
Desc format, const void *data, stride_t xstride, stride_t ystride,
stride_t zstride, std::vector<unsigned char> &scratch, unsigned int
dither = 0, int xorigin = 0, int yorigin = 0, int zorigin = 0)
Convert a rectangle of pixels (pointed to by data with the given format, dimensions, and strides into contigu-
ous pixels in the native format (described by the ImageSpec returned by the spec () member function). The
location of the newly converted data is returned, which may either be the original data itself if no data con-
version was necessary and the requested layout was contiguous (thereby avoiding unnecessary memory copies),
or may point into memory allocated within the scratch vector passed by the user. In either case, the caller
doesn’t need to worry about thread safety or freeing any allocated memory (other than eventually destroying the
scratch vector).

For f1loat to 8 bit integer conversions only, if dither parameter is nonzero, random dither will be added to reduce
quantization banding artifacts; in this case, the specific nonzero dither value is used as a seed for the hash function
that produces the per-pixel dither amounts, and the optional origin parameters help it to align the pixels to the right
position in the dither pattern.

5.3. Image Writers 107

OpenimagelO, Release 2.3.9

The remainder of this section simply lists the full implementation of our JPEG writer, which relies heavily on the open
source jpeg-6b library to perform the actual JPEG encoding.

// Copyright 2008-present Contributors to the OpenImageIO project.
// SPDX-License-Identifier: BSD-3-Clause
// https://github.com/OpenImageIO/oiio/blob/master/LICENSE.md

#include <cassert>
#include <cstdio>
#include <vector>

#include <OpenImageIO/filesystem.h>
#include <OpenImageIO/fmath.h>
#include <OpenImageIO/imageio.h>
#include <OpenImageIO/tiffutils.h>

#include "jpeg _pvt.h"
OITO_PLUGIN_NAMESPACE_BEGIN

#define DBG if (0)

// References:

// % JPEG library documentation: /usr/share/doc/libjpeg-devel-6b
// * JFIF spec: https://www.w3.org/Graphics/JPEG/jfif3.pdf

// + ITU T.871 (aka ISO/IEC 10918-5):

// https://www.itu.int/rec/T-REC-T.871-201105-I/en

class JpgOutput final : public ImageOutput ({
public:
Jpgoutput () { init(); }
virtual ~JpgOutput () { close(); }
virtual const charx format_name (void) const override { return "jpeg"; }
virtual int supports(string_view feature) const override
{
return (feature == "exif" || feature == "iptc");
}
virtual bool open(const std::string& name, const ImageSpecé& spec,
OpenMode mode = Create) override;
virtual bool write_scanline(int y, int z, TypeDesc format, const voidx data,
stride_t xstride) override;
virtual bool write_tile(int x, int y, int z, TypeDesc format,
const void* data, stride_t =xstride,
stride_t ystride, stride_t zstride) override;
virtual bool close () override;
virtual bool copy_image (ImageInput* in) override;

private:
FILE+ m_fd;
std::string m_filename;
unsigned int m_dither;
int m_next_scanline; // Which scanline 1is the next to write?
std::vector<unsigned char> m_scratch;
struct jpeg compress_struct m_cinfo;
struct jpeg error mgr c_jerr;

(continues on next page)

108 Chapter 5. Writing ImagelO Plugins

OpenimagelO, Release 2.3.9

(continued from previous page)

jvirt_barray_ptrx m_copy_coeffs;
struct Jjpeg decompress_structx m_copy_decompressor;
std: :vector<unsigned char> m_tilebuffer;

void init (void)

{

m_fd = NULL;
m_copy_coeffs = NULL;
m_copy_decompressor = NULL;

void set_subsampling(const int components[])

{
jpeg_set_colorspace (&m_cinfo, JCS_YCbCr) ;

m_cinfo.comp_info[0].h_samp_factor = components[0];
m_cinfo.comp_info[0].v_samp_factor = components|[1l];
m_cinfo.comp_info[l].h_samp_factor = components|[2];
m_cinfo.comp_info[l].v_samp_factor = components[3];
m_cinfo.comp_info[2].h_samp_factor = components[4];
m_cinfo.comp_info[2].v_samp_factor = components[5];

// Read the XResolution/YResolution and PixelAspectRatio metadata, store
// in density fields m_cinfo.X_ density,Y density.
void resmeta_to_density();

}i

OITIO_PLUGIN_EXPORTS_BEGIN

OITIO_EXPORT ImageOutput=*
jpeg_output_imageio_create ()
{

return new JpgOutput;

OIIO_EXPORT const charx Jjpeg_output_extensions]|]
. { "qu", ijeH, ijegH, lljif", lljfifll, "jfill, nullptr },.

OITIO_PLUGIN_EXPORTS_END

bool
JpgOutput: :open (const std::string& name, const ImageSpecé& newspec,
OpenMode mode)

if (mode != Create) {
errorf ("%s does not support subimages or MIP levels", format_name());

return false;

// Save name and spec for later use
m_filename = name;
m_spec = newspec;

(continues on next page)

5.3. Image Writers 109

OpenimagelO, Release 2.3.9

(continued from previous page)

// Check for things this format doesn't support
if (m_spec.width < 1 || m_spec.height < 1) {
errorf ("Image resolution must be at least 1xl, you asked for %d x %d",
m_spec.width, m_spec.height);
return false;

if (m_spec.depth < 1)
m_spec.depth = 1;

if (m_spec.depth > 1) {
errorf ("%s does not support volume images (depth > 1)", format_name());
return false;

m_fd = Filesystem::fopen (name, "wb");

if (m_fd == NULL) {
errorf ("Could not open \"%s\"", name);
return false;

m_cinfo.err = jpeg_std_error (&c_jerr); // set error handler
jpeg_create_compress (&ém_cinfo) ; // create compressor
jpeg_stdio_dest (¢ém_cinfo, m_£fd); // set output stream

// Set image and compression parameters
m_cinfo.image_width = m_spec.width;
m_cinfo.image_height = m_spec.height;

// JFIF can only handle grayscale and RGB. Do the best we can with this
// limited format by truncating to 3 channels if > 3 are requested,

// truncating to 1 channel if 2 are requested.

if (m_spec.nchannels >= 3) {

m_cinfo.input_components = 3;
m_cinfo.in_color_space = JCS_RGB;

} else {
m_cinfo.input_components = 1;
m_cinfo.in_color_space = JCS_GRAYSCALE;

resmeta_to_density();
m_cinfo.write_JFIF_header = TRUE;

if (m_copy_coeffs) {
// Back door for copy ()
jpeg_copy_critical_ parameters (m_copy_decompressor, &m_cinfo);
DBG std::cout << "out open: copy_critical_parameters\n";
Jpeg_write_coefficients (&m_cinfo, m_copy_coeffs);
DBG std::cout << "out open: write_coefficients\n";

} else {
// normal write of scanlines
Jjpeg_set_defaults (&m_cinfo); // default compression
// Careful —-- jpeqg_set_defaults overwrites density
resmeta_to_density();
DBG std::cout << "out open: set_defaults\n";

auto compqual = m_spec.decode_compression_metadata (" Jjpeg", 98);
if (Strutil::iequals (compqual.first, "Jpeg"))

(continues on next page)

110

Chapter 5. Writing ImagelO Plugins

OpenimagelO, Release 2.3.9

(continued from previous page)

jpeg_set_quality (&m_cinfo, clamp (compqual.second, 1, 100), TRUE);
else
jpeg_set_quality (ém_cinfo, 98, TRUE); // not jpeg? default qual

if (m_cinfo.input_components == 3) {
std::string subsampling = m_spec.get_string_attribute (
JPEG_SUBSAMPLING_ATTR) ;

if (subsampling == JPEG_444_STR)
set_subsampling (JPEG_444_COMP) ;
else if (subsampling == JPEG_422_STR)
set_subsampling (JPEG_422_COMP) ;
else if (subsampling == JPEG_420_STR)
set_subsampling (JPEG_420_COMP) ;
else if (subsampling == JPEG_411_STR)

set_subsampling (JPEG_411_COMP) ;
}

DBG std::cout << "out open: set_colorspace\n";

// Save as a progressive jpeg i1f requested by the user
if (m_spec.get_int_attribute (" jpeg:progressive”)) {
jpeg_simple_progression (&m_cinfo);

jpeg_start_compress (¢m_cinfo, TRUE); // start working
DBG std::cout << "out open: start_compress\n";

}

m_next_scanline = 0; // next scanline we'll write

// Write JPEG comment, 1f sent an 'ImageDescription'
ParamValuex comment = m_spec.find_attribute ("ImageDescription",
TypeDesc: : STRING) ;
if (comment && comment->data()) {
const char++ c = (const charxx)comment->data();
jpeg_write_marker (&m_cinfo, JPEG_COM, (JOCTET=«)~*c, strlen(*c) + 1);

if (Strutil::iequals (m_spec.get_string_attribute("oiio:ColorSpace"), "sRGRB"))
m_spec.attribute ("Exif:ColorSpace", 1);

// Write EXIF info

std: :vector<char> exif;

// Start the blob with "Exif" and two nulls. That's how it
// always is in the JPEG files I've examined.
exif.push_back ('E");

exif.push_back ('x'
exif.push_back ('i'
exif.push_back('f'
exif.push_back (0);
exif.push_back (0);
encode_exif (m_spec, exif);

Jjpeg_write_marker (¢m_cinfo, JPEG_APPO + 1, (JOCTETx*)&exif[0], exif.size());

)7
)
).

’

// Write IPTC IIM metadata tags, 1if we have anything
std::vector<char> iptc;
encode_iptc_iim(m_spec, iptc);
if (iptc.size()) {
static char photoshop[] = "Photoshop 3.0";

(continues on next page)

5.3. Image Writers 111

OpenimagelO, Release 2.3.9

(continued from previous page)

std::vector<char> head(photoshop, photoshop + strlen(photoshop) + 1);

head.push_back (0) ;

head.push_back ((char) (iptc.size() >> 8)); // size of block

head.push_back ((char) (iptc.size () & 0xff));

iptc.insert (iptc.begin(), head.begin(), head.end());

jpeg_write_marker (&m_cinfo, JPEG_APPO + 13, (JOCTETx*)&iptcl[O],
iptc.size());

static char _8BIM[] = "8BIM";
head.insert (head.end (), _8BIM, _8BIM + 4);
head.push_back (4); // 0x0404
head.push_back (4) ;
head.push_back (0); // four bytes of zeroes
head.push_back (0) ;
head.push_back (0) ;

(

(

// Write XMP packet, 1f we have anything

std::string xmp = encode_xmp (m_spec, true);

if (!xmp.empty()) {
static char prefix[] = "http://ns.adobe.com/xap/1.0/";
std: :vector<char> block (prefix, prefix + strlen(prefix) + 1);
block.insert (block.end (), xmp.c_str (), xmp.c_str() + xmp.length());
jpeg_write_marker (&m_cinfo, JPEG_APPO + 1, (JOCTET«)&block[O0],

block.size());
}
m_spec.set_format (TypeDesc: :UINT8); // JPG is only 8 bit

// Write ICC profile, if we have anything

const ParamValuex icc_profile_parameter = m_spec.find_attribute (
ICC_PROFILE_ATTR) ;
if (icc_profile_parameter != NULL) {

unsigned charx icc_profile
= (unsigned charx)icc_profile_parameter->datal();
unsigned int icc_profile_length = icc_profile_parameter->type() .size();
if (icc_profile && icc_profile_length) {
/% Calculate the number of markers we'll need, rounding up of course */
int num_markers = icc_profile_length / MAX_DATA_BYTES_IN_MARKER;
if ((unsigned int) (num_markers » MAX DATA_BYTES_IN_MARKER)
!= icc_profile_length)
num_markers++;
int curr_marker = 1; /* per spec, count strarts at 1#*/
size_t profile_size = MAX_DATA_BYTES_IN_MARKER + ICC_HEADER_SIZE;
std: :vector<unsigned char> profile(profile_size);
while (icc_profile_length > 0) {
// length of profile to put in this marker
unsigned int length
= std::min(icc_profile_length,
(unsigned int)MAX_DATA_BYTES_IN_MARKER) ;
icc_profile_length —-= length;
// Write the JPEG marker header (APP2 code and marker length)
strncpy ((charx) ¢profile[0], "ICC_PROFILE", profile_size);
profile[11l] = 0;
profile[12] = curr_marker;
profile[13] = (unsigned char)num _markers;
memcpy (¢profile[0] + ICC_HEADER_SIZE,
icc_profile + length % (curr_marker - 1), length);

(continues on next page)

112 Chapter 5. Writing ImagelO Plugins

OpenlmagelO, Release 2.3.9

(continued from previous page)

Jjpeg_write_marker (ém_cinfo, JPEG_APPO + 2, &profile[O],
ICC_HEADER_SIZE + length);
curr_marker++;

m_dither = m_spec.get_int_attribute("oiio:dither", 0);

// If user asked for tiles —— which JPEG doesn't support, emulate it by
// buffering the whole image.
if (m_spec.tile_width && m_spec.tile_height)

m_tilebuffer.resize (m_spec.image_bytes());

return true;

void
JpgOutput: :resmeta_to_density ()
{
string_view resunit = m_spec.get_string_attribute ("ResolutionUnit");
if (Strutil::iequals(resunit, "none"))
m_cinfo.density_unit = 0;
else if (Strutil::iequals(resunit, "in"))
m_cinfo.density_unit = 1;
else if (Strutil::iequals(resunit, "cm"))
m_cinfo.density_unit = 2;
else
m_cinfo.density_unit = 0;

int X_density int (m_spec.get_float_attribute ("XResolution"));
int Y_density = int (m_spec.get_float_attribute ("YResolution", X_density));
const float aspect = m_spec.get_float_attribute("PixelAspectRatio", 1.0f);
if (aspect != 1.0f && X_density <= 1 && Y_density <= 1) {
// No useful [XY]Resolution, but there is an aspect ratio requested.
// Arbitrarily pick 72 dots per undefined unit, and jigger it to
// honor it as best as we can.
//
// Here's where things get tricky. By logic and reason, as well as
// the JFIF spec and ITU T.871, the pixel aspect ratio is clearly
// ydensity/xdensity (because aspect 1is xlength/ylength, and density
// is 1/length). BUT... for reasons lost to history, a number of
// apps get this exactly backwards, and these include PhotoShop,
// Nuke, and RV. So, alas, we must replicate the mistake, or else
// all these common applications will misunderstand the JPEG files
// written by OIIO and vice versa.
Y_density = 72;
X_density = int (Y_density * aspect + 0.5f);
m_spec.attribute ("XResolution", float (Y_density * aspect + 0.5f));
m_spec.attribute ("YResolution", float (Y_density));
}
while (X_density > 65535 || Y_density > 65535) {
// JPEG header can store only UINT16 density values. If we
// overflow that limit, punt and knock it down to <= 16 bits.
X_density /= 2;

(continues on next page)

5.3. Image Writers 113

OpenimagelO, Release 2.3.9

(continued from previous page)

Y_density /= 2;
}
m_cinfo.X_density = X_density;
m_cinfo.Y_density = Y_density;

bool
JpgOutput::write_scanline (int y, int z, TypeDesc format, const wvoidx data,
stride_t xstride)

y —= m_spec.y;
if (y != m_next_scanline) {
errorf ("Attempt to write scanlines out of order to %s", m_filename);
return false;
}
if (y >= (int)m_cinfo.image_height) {
errorf ("Attempt to write too many scanlines to %s", m_filename);
return false;
}

assert (y == (int)m_cinfo.next_scanline);

// Here's where we do the dirty work of conforming to JFIF's limitation
// of 1 or 3 channels, by temporarily doctoring the spec so that

// to_native_scanline properly contiguizes the first 1 or 3 channels,
// then we restore it. The call to to_native scanline below needs

// m_spec.nchannels to be set to the true number of channels we're

// writing, or it won't arrange the data properly. But if we doctored
// m_spec.nchannels permanently, then subsequent calls to write_scanline
// (including any surrounding call to write_image) with

// stride=AutoStride would screw up the strides since the user's stride
// 1is actually not 1 or 3 channels.

m_spec.auto_stride (xstride, format, m_spec.nchannels);

int save_nchannels = m_spec.nchannels;

m_spec.nchannels = m_cinfo.input_components;

data = to_native_scanline (format, data, xstride, m_scratch, m_dither, vy, z);
m_spec.nchannels = save_nchannels;

jpeg_write_scanlines (ém_cinfo, (JSAMPLE=x«x)&data, 1);
++m_next_scanline;

return true;

bool
JpgOutput: :write_tile(int x, int y, int z, TypeDesc format, const wvoid* data,
stride_t xstride, stride_t ystride, stride_t zstride)

// Emulate tiles by buffering the whole image
return copy_tile_to_image_buffer(x, y, z, format, data, xstride, ystride,
zstride, &m_tilebuffer([0]);

(continues on next page)

114 Chapter 5. Writing ImagelO Plugins

OpenlmagelO, Release 2.3.9

(continued from previous page)

bool

JpgOutput::close ()

{

if (!m_fd) { // Already closed
return true;
init ();

bool ok = true;

if (m_spec.tile_width) {
// We've been emulating tiles; now dump as scanlines.
OIIO_DASSERT (m_tilebuffer.size());
ok &= write_scanlines(m_spec.y, m_spec.y + m_spec.height, O,
m_spec.format, &m_tilebuffer[0]);
std::vector<unsigned char> () .swap(m_tilebuffer); // free it

if (m_next_scanline < spec().height && m_copy_coeffs == NULL) {

// But if we've only written some scanlines, write the rest to avoid

// errors

std: :vector<char> buf (spec() .scanline_bytes (), 0);

char+ data = &buf[0];

while (m_next_scanline < spec () .height) {
jpeg_write_scanlines (&m_cinfo, (JSAMPLEx*x*)é&data, 1);
// DBG std::cout << "out close: write_ scanlines\n";
++m_next_scanline;

|| m_copy_coeffs) {

if (m_next_scanline >= spec () .height
DBG std::cout << "out close: about to finish_compress\n";
jpeg_finish_compress (&m_cinfo);
DBG std::cout << "out close: finish_compress\n";

} else {
DBG std::cout << "out close: about to abort_compress\n";
jpeg_abort_compress (&m_cinfo);
DBG std::cout << "out close: abort_compress\n";

}

DBG std::cout << "out close: about to destroy_compress\n";

jpeg_destroy_compress (&m_cinfo);

fclose (m_£fd);

m_fd = NULL;

init () ;

return ok;

bool
JpgOutput: :copy_image (ImageInput* in)
{
if (in && !strcmp(in->format_name (), "Jpeg")) {
JpgInput* Jjpg_in = dynamic_cast<JpgInput*> (in);

(continues on next page)

5.3. Image Writers 115

OpenimagelO, Release 2.3.9

(continued from previous page)

std::string in_name = jpg_in->filename();
DBG std::cout << "JPG copy_image from " << in_name << "\n";

// Save the original input spec and close it
ImageSpec orig_in_spec = in->spec();
in->close () ;

DBG std::cout << "Closed old file\n";

// Re-open the input spec, with special request that the JpgInput
// will recognize as a request to merely open, but not start the
// decompressor.

ImageSpec in_spec;

ImageSpec config_spec;

config_spec.attribute ("_Jjpeg:raw", 1);

in->open (in_name, in_spec, config_spec);

// Re-open the output

std: :string out_name = m_filename;

ImageSpec orig_out_spec = spec();

close () ;

m_copy_coeffs = (jvirt_barray_ptr+) jpg_in->coeffs();
m_copy_decompressor = &jpg_in->m_cinfo;

open (out_name, orig_out_spec);

// Strangeness —-- the write coefficients somehow sets things up
// so that certain writes only happen in close(), which MUST

// happen while the input file is still open. So we go ahead
// and close() now, so that the caller of copy_image() doesn't
// close the input file first and then wonder why they crashed.
close();

return true;

return ImageOutput::copy_image (in);

OITIO_PLUGIN_NAMESPACE_END

5.4

Tips and Conventions

OpenlmagelO’s main goal is to hide all the pesky details of individual file formats from the client application. This
inevitably leads to various mismatches between a file format’s true capabilities and requests that may be made through
the OpenlmagelO APIs. This section outlines conventions, tips, and rules of thumb that we recommend for image file
support.

Readers

If the file format stores images in a non-spectral color space (for example, YUV), the reader should automatically
convert to RGB to pass through the OIIO APIs. In such a case, the reader should signal the file’s true color space
viaa "Foo:colorspace" attribute in the ImageSpec.

“Palette” images should be automatically converted by the reader to RGB.

If the file supports thumbnail images in its header, the reader should provide an
ImageInput::get_thumbnail () method, as well as store the thumbnail dimensions in the ImageSpec

116

Chapter 5. Writing ImagelO Plugins

OpenimagelO, Release 2.3.9

as attributes "thumbnail_width", "thumbnail_height", and "thumbnail_nchannels" (all of
which should be int).

Writers

The overall rule of thumb is: try to always “succeed” at writing the file, outputting the closest approximation of the
user’s data as possible. But it is permissible to fail the open () call if it is clearly nonsensical or there is no possible
way to output a decent approximation of the user’s data. Some tips:

If the client application requests a data format not directly supported by the file type, silently write the supported
data format that will result in the least precision or range loss.

It is customary to fail a call to open () if the ImageSpec requested a number of color channels plainly not
supported by the file format. As an exception to this rule, it is permissible for a file format that does not support
alpha channels to silently drop the fourth (alpha) channel of a 4-channel output request.

If the app requests a "Compression" not supported by the file format, you may choose as a default any
lossless compression supported. Do not use a lossy compression unless you are fairly certain that the app
wanted a lossy compression.

If the file format is able to store images in a non-spectral color space (for example, YUV), the writer may accept
a"Foo:colorspace" attribute in the ImageSpec as a request to automatically convert and store the data in
that format (but it will always be passed as RGB through the OIIO APIs).

If the file format can support thumbnail images in its header, and the ImageSpec contain at-
tributes "thumbnail_ width", "thumbnail_height™", "thumbnail nchannels", and
"thumbnail_image", the writer should attempt to store the thumbnail if possible.

5.4. Tips and Conventions 117

OpenimagelO, Release 2.3.9

118 Chapter 5. Writing ImagelO Plugins

CHAPTER
SIX

BUNDLED IMAGEIO PLUGINS

This chapter lists all the image format plugins that are bundled with OpenImagelO. For each plugin, we delineate any
limitations, custom attributes, etc. The plugins are listed alphabetically by format name.

6.1 BMP

BMP is a bitmap image file format used mostly on Windows systems. BMP files use the file extension . bmp.

BMP is not a nice format for high-quality or high-performance images. It only supports unsigned integer 1-, 2-, 4-,
and 8- bits per channel; only grayscale, RGB, and RGBA; does not support MIPmaps, multiimage, or tiles.

Configuration settings for BMP input

When opening a BMP Imagelnput with a configuration (see Section sec-inputwithconfig), the following special con-

figuration options are supported:

Input Configuration At- | Type Meaning

tribute

bmp :monochrome_detect| int If nonzero, try to detect when all palette entries are gray and pretend
thatit’s a 1-channel image to allow the calling app to save memory and
time (even though the BMP format does not actually support grayscale
images per se. It is 1 by default, but by setting the hint to 0, you can
disable this behavior.

BMP Attributes

ImageSpec Attribute Type BMP header data or explanation

XResolution float hres

YResolution float vres

ResolutionUnit string always "m" (pixels per meter)

bmp:bitsperpixel int When not a whole number of bytes per channel, this describes the bits
per pixel in the file (16 for R4G4B4, 8 for a 256-color palette image,
4 for a 16-color palette image, 1 for a 2-color palette image).

bmp:version int Version of the BMP file format

BMP Limitations

119

OpenimagelO, Release 2.3.9

e OIIO’s current implementation will only write uncompessed 8bpp (from a 1-channel source), 24bpp (if 3 chan-
nel), or 32bpp (if 4 channel). Reads, however, can handle RLE compression as well as 1, 4, or 16 bpp input.

* Only 1, 3, and 4-channel images are supported with BMP due to limitations of the file format itself.

* BMP only supports uint8 pixel data types. Requests for other pixel data types will automatically be converted
to uint8.

6.2 Cineon

Cineon is an image file format developed by Kodak that is commonly used for scanned motion picture film and digital
intermediates. Cineon files use the file extension . cin.

6.3 DDS

DDS (Direct Draw Surface) is an image file format designed by Microsoft for use in Direct3D graphics. DDS files use
the extension . dds.

DDS is an awful format, with several compression modes that are all so lossy as to be completely useless for high-end
graphics. Nevertheless, they are widely used in games and graphics hardware directly supports these compression
modes. Alas.

OpenlmagelO currently only supports reading DDS files, not writing them.

ImageSpec Attribute Type DDS header data or explanation

compression string Compression type

oiio:BitsPerSample int bits per sample

textureformat string Set correctly to one of "Plain Texture", "Volume
Texture", or "CubeFace Environment".

texturetype string Set correctly to one of "Plain Texture", "Volume
Texture",or "Environment".

dds:CubeMapSides string For environment maps, which cube faces are present (e.g., "+x -x
+y —y" if x & y faces are present, but not z).

120 Chapter 6. Bundled ImagelO Plugins

OpenimagelO, Release 2.3.9

6.4 DICOM

DICOM (Digital Imaging and Communications in Medicine) is the standard format used for medical images. DICOM
files usually have the extension . dcm.

OpenlmagelO currently only supports reading DICOM files, not writing them.

ImageSpec Attribute Type DDS header data or explanation

oiio:BitsPerSample int Bits per sample.

dicom: * any DICOM header information and metadata is currently all preceded by
the dicom: prefix.

6.5 DPX

DPX (Digital Picture Exchange) is an image file format used for motion picture film scanning, output, and digital
intermediates. DPX files use the file extension . dpx.

Configuration settings for DPX input

When opening a DPX Imagelnput with a configuration (see Section sec-inputwithconfig), the following special con-
figuration options are supported:

Input Configuration At- | Type Meaning
tribute
oiio:RawColor int If nonzero, reading images with non-RGB color models (such as
YCbCr) will return unaltered pixel values (versus the default OIIO
behavior of automatically converting to RGB).

oiio:ioproxy ptr Pointer to a Filesystem: : IOProxy that will handle the I/O, for
example by reading from memory rather than the file system.

Configuration settings for DPX output

When opening a DPX ImageOutput, the following special metadata tokens control aspects of the writing itself:

Output configuration At- | Type Meaning
tribute
oiio:RawColor int If nonzero, writing images with non-RGB color models (such as
YCbCr) will keep unaltered pixel values (versus the default OIIO be-
havior of automatically converting from RGB to the designated color
space as the pixels are written).

oiio:ioproxy ptr Pointer to a Filesystem: : IOProxy that will handle the I/O, for
example by writing to memory rather than the file system.

Custom I/0 Overrides

DPX input and output both support the “custom I/O” feature via the special "oiio:ioproxy" attributes (see Sec-
tions sec-imageoutput-ioproxy and Custom I/O proxies (and reading the file from a memory buffer)) as well as the
set_ioproxy () methods.

DPX Attributes

6.4. DICOM 121

OpenimagelO, Release 2.3.9

ImageSpec Attribute Type DPX header data or explanation

ImageDescription string Description of image element

Copyright string Copyright statement

Software string Creator

DocumentName string Project name

DateTime string Creation date/time

Orientation int the orientation of the DPX image data (see
metadata:orientation)

compression string The compression type

PixelAspectRatio float pixel aspect ratio

oiio:BitsPerSample int the true bits per sample of the DPX file.

oiio:Endian string When writing, force a particular endianness for the output "1ittle"
or "big")

smpte:TimeCode int[2] SMPTE time code (vecsemantics will be marked as TIMECODE)

smpte:KeyCode int[7] SMPTE key code (vecsemantics will be marked as KEYCODE)

dpx:Transfer string Transfer characteristic

dpx:Colorimetric string Colorimetric specification

dpx:ImageDescriptor string ImageDescriptor

dpx:Packing string Image packing method

dpx:TimeCode int SMPTE time code

dpx:UserBits int SMPTE user bits

dpx:SourceDateTime string source time and date

dpx:FilmEdgeCode string FilmEdgeCode

dpx:Signal string Signal ("Undefined", "NTSC", "PAL", etc.)

dpx:UserData UCHAR([[¥User data (stored in an array whose length is whatever it it was in the
DPX file)

dpx:EncryptKey int Encryption key (-1 is not encrypted)

dpx:DittoKey int Ditto (0 = same as previous frame, 1 = new)

dpx:LowData int reference low data code value

dpx:LowQuantity float reference low quantity

dpx:HighData int reference high data code value

dpx:HighQuantity float reference high quantity

dpx:XScannedSize float X scanned size

dpx:YScannedSize float Y scanned size

dpx:FramePosition int frame position in sequence

dpx:Sequencelength int sequence length (frames)

dpx:HeldCount int held count (1 = default)

dpx:FrameRate float frame rate of original (frames/s)

dpx:ShutterAngle float shutter angle of camera (deg)

dpx:Version string version of header format

dpx:Format string format (e.g., "Academy")

dpx:FrameId string frame identification

dpx:SlateInfo string slate information

dpx:SourceImageFileNamstring source image filename

dpx:InputDevice string input device name

dpx:InputDeviceSerial Nstringr input device serial number

dpx:Interlace int interlace (O = noninterlace, 1 = 2:1 interlace

dpx:FieldNumber int field number

dpx:HorizontalSampleRatloat horizontal sampling rate (Hz)

dpx:VerticalSampleRate float vertical sampling rate (Hz)

dpx:TemporalFrameRate| float temporal sampling rate (Hz)

continues on next page

122

Chapter 6. Bundled ImagelO Plugins

OpenimagelO, Release 2.3.9

Table 1 — continued from previous page

ImageSpec Attribute Type DPX header data or explanation
dpx:TimeOffset float time offset from sync to first pixel (ms)
dpx:BlackLevel float black level code value
dpx:BlackGain float black gain

dpx:BreakPoint float breakpoint

dpx:WhiteLevel float reference white level code value
dpx:IntegrationTimes | float integration time (s)
dpx:EndOfLinePadding | int Padded bytes at the end of each line
dpx:EndOfImagePadding| int Padded bytes at the end of each image

6.6 Field3D

Field3d is an open-source volume data file format. Field3d files commonly use the extension .f3d. The official
Field3D site is: https://github.com/imageworks/Field3D Currently, OpenImagelO only reads Field3d files, and does
not write them.

Fields are comprised of multiple layers (which appear to OpenlmagelO as subimages). Each layer/subimage may have
a different name, resolution, and coordinate mapping. Layers may be scalar (1 channel) or vector (3 channel) fields,
and the data may be half, float, or double.

OpenlmagelO always reports Field3D files as tiled. If the Field3d file has a “block size”, the block size will be reported
as the tile size. Otherwise, the tile size will be the size of the entire volume.

ImageSpec Attribute Type Field3d header data or explanation
ImageDescription string unique layer name
oiio:subimagename string unique layer name
field3d:partition string the partition name
field3d:layer string the layer (a.k.a. attribute) name
field3d:fieldtype string field type, one of: "dense", "sparse", or "MAC"
field3d:mapping string the coordinate mapping type
field3d:localtoworld | ma- if a matrixMapping, the local-to-world transformation matrix
trix of
doubles
worldtolocal matrix if a matrixMapping, the world-to-local coordinate mapping
The “unique layer name” is generally the partition name + : + attribute name (example:

"defaultfield:density"), with the following exceptions: (1) if the partition and attribute names are identical,
just one is used rather than it being pointlessly concatenated (e.g., "density", not "density:density");
(2) if there are mutiple partitions + attribute combinations with identical names in the same file, “number” will be
added after the partition name for subsequent layers (e.g., "default:density", "default.2:density",
"default.3:density").

6.6. Field3D 123

https://github.com/imageworks/Field3D

OpenimagelO, Release 2.3.9

6.7 FITS

FITS (Flexible Image Transport System) is an image file format used for scientific applications, particularly profes-
sional astronomy. FITS files use the file extension .fits. Official FITS specs and other info may be found at:
http://fits.gsfc.nasa.gov/

OpenlmagelO supports multiple images in FITS files, and supports the following pixel data types: UINTS, UINT16,
UINT32, FLOAT, DOUBLE.

FITS files can store various kinds of arbitrary data arrays, but OpenlmagelO’s support of FITS is mostly limited using
FITS for image storage. Currently, OpenlmagelO only supports 2D FITS data (images), not 3D (volume) data, nor
1-D or higher-dimensional arrays.

ImageSpec Attribute Type FITS header data or explanation

Orientation int derived from FITS “ORIENTAT” field.

DateTime string derived from the FITS “DATE” field.

Comment string FITS “COMMENT” (*)

History string FITS “HISTORY” (*)

Hierarch string FITS “HIERARCH” (*)

other all other FITS keywords will be added to the ImageSpec as arbitrary
named metadata.

Note: If the file contains multiple COMMENT, HISTORY, or HIERARCH fields, their text will be appended to form
a single attribute (of each) in OpenlmagelO’s ImageSpec.

6.8 GIF

GIF (Graphics Interchange Format) is an image file format developed by CompuServe in 1987. Nowadays it is widely
used to display basic animations despite its technical limitations.

ImageSpec Attribute Type GIF header data or explanation
gif:Interlacing int Specifies if image is interlaced (0 or 1).
FramesPerSecond int[2] Frames per second
(ratio-
nal)
oiio:Movie int If nonzero, indicates that it’s a multi-subimage file indended to repre-
sent an animation.
oiio:LoopCount int Number of times the animation should be played (0-65535, 0 stands
for infinity).
gif:LoopCount int Deprecated synonym for oiio:LoopCount.
ImageDescription string The GIF comment field.
Limitations

* GIF only supports 3-channel (RGB) images and at most 8 bits per channel.

124 Chapter 6. Bundled ImagelO Plugins

http://fits.gsfc.nasa.gov/

OpenimagelO, Release 2.3.9

» Each subimage can include its own palette or use global palette. Palettes contain up to 256 colors of which one
can be used as background color. It is then emulated with additional Alpha channel by OpenlmagelO’s reader.

6.9 HDR/RGBE

HDR (High Dynamic Range), also known as RGBE (rgb with extended range), is a simple format developed for the
Radiance renderer to store high dynamic range images. HDR/RGBE files commonly use the file extensions .hdr.
The format is described in this section of the Radiance documentation: http://radsite.Ibl.gov/radiance/refer/filefmts.pdf

RGBE does not support tiles, multiple subimages, mipmapping, true half or float pixel values, or arbitrary metadata.
Only RGB (3 channel) files are supported.

RGBE became important because it was developed at a time when no standard file formats supported high dynamic
range, and is still used for many legacy applications and to distribute HDR environment maps. But newer formats with
native HDR support, such as OpenEXR, are vastly superior and should be preferred except when legacy file access is
required.

ImageSpec Attribute Type RGBE header data or explanation

Orientation int encodes the orientation (see Section Display hints)

oiio:ColorSpace string Color space (see Section Color information).

oiio:Gamma float the gamma correction specified in the RGBE header (if it’s gamma
corrected).

6.10 HEIF/HEIC/AVIF

HEIF is a container format for images compressed with various compression standards (HEIC is based on
HEVC/H.265, AVIF is based on AV1). HEIC is used commonly for iPhone camera pictures, but it is not Apple-
specific and will probably become more popular on other platforms in coming years. HEIF files usually use the file
extension . HEIC or .AVIF depending on their main compression type.

HEIC and AVIF compression formats are lossy, but are higher visual quality than JPEG while taking <= half the file
size. Currently, OIIO’s HEIF reader supports reading files as RGB or RGBA, uint8 pixel values. Multi-image files are
currently supported for reading, but not yet writing. All pixel data is uint8, though we hope to add support for HDR
(more than 8 bits) in the future.

Configuration settings for HEIF input

When opening an HEIF Imagelnput with a configuration (see Section sec-inputwithconfig), the following special
configuration attributes are supported:

Input Configuration At- | Type Meaning
tribute
oiio:UnassociatedAlphaint If nonzero, and the file contains unassociated alpha, this will cause the
reader to leave alpha unassociated (versus the default of premultiply-
ing color channels by alpha if the alpha channel is unassociated).

6.9. HDR/RGBE 125

http://radsite.lbl.gov/radiance/refer/filefmts.pdf

OpenimagelO, Release 2.3.9

Configuration settings for HEIF output

When opening an HEIF ImageOutput, the following special metadata tokens control aspects of the writing itself:

ImageSpec Attribute Type HEIF header data or explanation

Compression string If supplied, can be "heic" or "avif", but may optionally have a
quality value appended, like "heic: 90". Quality can be 1-100, with
100 meaning lossless. The default is 75.

6.11 ICO

ICO is an image file format used for small images (usually icons) on Windows. ICO files use the file extension . ico.

ImageSpec Attribute Type ICO header data or explanation

oiio:BitsPerSample int the true bits per sample in the ICO file.

ico:PNG int if nonzero, will cause the ICO to be written out using PNG format.
Limitations

* ICO only supports UINT8 and UINT16 formats; all output images will be silently converted to one of these.

* ICO only supports small images, up to 256 x 256. Requests to write larger images will fail their open () call.

6.12 IFF

IFF files are used by Autodesk Maya and use the file extension . iff.

ImageSpec Attribute Type IFF header data or explanation

Artist string The IFF “author”

DateTime string Creation date/time

compression string The compression type ("none" or "rle" [default])
oiio:BitsPerSample int the true bits per sample of the IFF file.

126 Chapter 6. Bundled ImagelO Plugins

OpenimagelO, Release 2.3.9

6.13 JPEG

JPEG (Joint Photographic Experts Group), or more properly the JFIF file format containing JPEG-compressed pixel
data, is one of the most popular file formats on the Internet, with applications, and from digital cameras, scanners,
and other image acquisition devices. JPEG/JFIF files usually have the file extension . jpg, . jpe, . jpeg, . Jjif,
.jfif,or .jfi. The JFIF file format is described by http://www.w3.org/Graphics/JPEG/jfif3.pdf.

Although we strive to support JPEG/JFIF because it is so widely used, we acknowledge that it is a poor format for high-
end work: it supports only 1- and 3-channel images, has no support for alpha channels, no support for high dynamic
range or even 16 bit integer pixel data, by convention stores SRGB data and is ill-suited to linear color spaces, and does
not support multiple subimages or MIPmap levels. There are newer formats also blessed by the Joint Photographic
Experts Group that attempt to address some of these issues, such as JPEG-2000, but these do not have anywhere near
the acceptance of the original JPEG/JFIF format.

ImageSpec Attribute Type JPEG header data or explanation

ImageDescription string the JPEG Comment field

Orientation int the image orientation

XResolution, The resolution and units from the Exif header

YResolution,

ResolutionUnit

Compression string If supplied, must be " jpeg", but may optionally have a quality value
appended, like " jpeg: 90". Quality can be 1-100, with 100 meaning
lossless.

ICCProfile uint8[] The ICC color profile

jpeg:subsampling string Describes the chroma subsampling, e.g., "4:2:0" (the default),
"4:4:4", "4:2:2", 421"

Exif:*x, IPTC:%, XMP: «, Extensive Exif, IPTC, XMP, and GPS data are supported by the

GPS: * reader/writer, and you should assume that nearly everything described
Appendix Metadata conventions is properly translated when using
JPEG files.

Configuration settings for JPEG output

When opening a JPEG ImageOutput, the following special metadata tokens control aspects of the writing itself:

Output Configuration At- | Type Meaning

tribute

oiio:dither int If nonzero and outputting UINTS values in the file, will add a small
amount of random dither to combat the appearance of banding.

oiio:ioproxy ptr Pointer to a Filesystem: : TOProxy that will handle the I/O, for
example by reading from memory rather than the file system.

jpeg:progressive int If nonzero, will write a progressive JPEG file.

Custom I/0 Overrides

JPEG input (but, currently, not output) supports the “custom I/O” feature via the ImageInput: :set_ioproxy ()
method and the special "oiio:ioproxy" attributes (see Section Custom I/O proxies (and reading the file from a
memory buffer)).

Limitations

» JPEG/JFIF only supports 1- (grayscale) and 3-channel (RGB) images. As a special case, OpenlmagelO’s JPEG
writer will accept n-channel image data, but will only output the first 3 channels (if n >= 3) or the first channel
(if n <= 2), silently drop any extra channels from the output.

6.13. JPEG 127

http://www.w3.org/Graphics/JPEG/jfif3.pdf

OpenimagelO, Release 2.3.9

* Since JPEG/JFIF only supports 8 bits per channel, OpenlmagelO’s JPEG/JFIF writer will silently convert to
UINTS8 upon output, regardless of requests to the contrary from the calling program.

* OpenlmagelO’s JPEG/JFIF reader and writer always operate in scanline mode and do not support tiled image
input or output.

6.14 JPEG-2000

JPEG-2000 is a successor to the popular JPEG/JFIF format, that supports better (wavelet) compression and a number
of other extensions. It’s geared toward photography. JPEG-2000 files use the file extensions . jp2 or . j2k. The
official JPEG-2000 format specification and other helpful info may be found at: http://www.jpeg.org/JPEG2000.htm

JPEG-2000 is not yet widely used, so OpenlmagelO’s support of it is preliminary. In particular, we are not yet very
good at handling the metadata robustly.

ImageSpec Attribute Type JPEG-2000 header data or explanation
jpeg2000:streamformat| string specifies the JPEG-2000 stream format ("none" or " jpc™")

6.15 Movie formats (using ffmpeg)

The £fmpeg-based reader is capable of reading the individual frames from a variety of movie file formats, including:

Format Extensions

AVI .avi

QuickTime .gqt, .mov
MPEG-4 .mp4, .m4a, .midv
3GPP files .3gp, .39g2
Motion JPEG-2000 | .mj2

Apple M4V .mév
MPEG-1/MPEG-2 .mpg

Currently, these files may only be read. Write support may be added in a future release. Also, currently, these files
simply look to OIIO like simple multi-image files and not much support is given to the fact that they are technically
movies (for example, there is no support for reading audio information).

Some special attributes are used for movie files:

128 Chapter 6. Bundled ImagelO Plugins

http://www.jpeg.org/JPEG2000.htm

OpenimagelO, Release 2.3.9

ImageSpec Attribute Type Header data or explanation
oiio:Movie int Nonzero value for movie files
oiio:subimages int The number of frames in the movie, positive if it can be known without

reading the entire file. Zero or not present if the number of frames
cannot be determinend from reading from just the file header.
FramesPerSecond int[2] Frames per second

(ratio-
nal)

6.16 Null format

The nullptr reader/writer is a mock-up that does not perform any actual I/O. The reader just returns constant-
colored pixels, and the writer just returns directly without saving any data. This has several uses:

* Benchmarking, if you want to have OIIO’s input or output truly take as close to no time whatsoever.

* “Dry run” of applications where you don’t want it to produce any real output (akin to a Unix command that you
redirect output to /dev/null).

* Make “fake” input that looks like a file, but the file doesn’t exist (if you are happy with constant-colored pixels).

The filename allows a REST-ful syntax, where you can append modifiers that specify things like resolution (of the
non-existent file), etc. For example:

foo.null?RES=640x480&CHANNELS=3

would specify a null file with resolution 640x480 and 3 channels. Token/value pairs accepted are:

RES=1024x1024 Set resolution (3D example: 256x256x100)
CHANNELS=4 Set number of channels

TILES=64x64 Makes it look like a tiled image with tile size
TYPE=uint$8 Set the pixel data type

PIXEL=r,g,b, ... | Setpixel values (comma separates channel values)
TEX=1 Make it look like a full MIP-mapped texture
attrib=value Anything else will set metadata

6.16. Null format 129

OpenimagelO, Release 2.3.9

6.17 OpenEXR

OpenEXR is an image file format developed by Industrial Light & Magic, and subsequently open-sourced. OpenEXR’s
strengths include support of high dynamic range imagery (half and float pixels), tiled images, explicit support of
MIPmaps and cubic environment maps, arbitrary metadata, and arbitrary numbers of color channels. OpenEXR files
use the file extension . exr. The official OpenEXR site is http://www.openexr.com/.

Attributes
ImageSpec Attribute Type OpeneEXR header data or explanation
width, height, %,y int dataWindow
full width, int displayWindow
full_height, full_x,
full_y
worldtocamera matrix worldToCamera
worldtoscreen matrix worldToScreen
worldtoNDC matrix worldToONDC
ImageDescription string comments
Copyright string owner
DateTime string capDate
PixelAspectRatio float pixelAspectRatio
ExposureTime float expTime
FNumber float aperture
compression string one of: "none", "rle", "zip", "zips", "piz", "pxr24",

"b44", "bd4a", "dwaa", or "dwab". If the writer receives a re-
quest for a compression type it does not recognize or is not supported
by the version of OpenEXR on the system, it will use "zip" by de-
fault. For "dwaa" and "dwab", the dwaCompressionLevel may be
optionally appended to the compression name after a colon, like this:
"dwaa:200". (The default DWA compression value is 45.)
textureformat string "Plain Texture" for ~ MIP-mapped OpenEXR files,
"CubeFace Environment" or "Latlong Environment"
for OpenEXR environment maps. Non-environment non-MIP-
mapped OpenEXR files will not set this attribute.

wrapmodes string wrapmodes

FramesPerSecond int[2] Frames per second playback rate (vecsemantics will be marked as RA-
TIONAL)

captureRate int[2] Frames per second capture rate (vecsemantics will be marked as RA-
TIONAL)

smpte:TimeCode int[2] SMPTE time code (vecsemantics will be marked as TIMECODE)

smpte:KeyCode int[7] SMPTE key code (vecsemantics will be marked as KEYCODE)

openexr:lineOrder string OpenEXR lineOrder attribute: "increasingY", "randomY", or
"decreasingY".

openexr:roundingmode | int the MIPmap rounding mode of the file.

openexr:dwaCompressionfleael compression level for dwaa or dwab compression (default: 45.0).

other All other attributes will be added to the ImageSpec by their name and
apparent type.

Configuration settings for OpenEXR input

When opening an OpenEXR Imagelnput with a configuration (see Section sec-inputwithconfig), the following special
configuration attributes are supported:

130 Chapter 6. Bundled ImagelO Plugins

http://www.openexr.com/

OpenimagelO, Release 2.3.9

Input Configuration At- | Type Meaning

tribute
oiio:ioproxy ptr Pointer to a Filesystem: : IOProxy that will handle the 1/O, for
example by reading from memory rather than the file system.
oiio:missingcolor float or | Either an array of float values or a string holding a comma-separated
string list of values, if present this is a request to use this color for pixels of

any missing tiles or scanlines, rather than considering a tile/scanline
read failure to be an error. This can be helpful when intentionally
reading partially-written or incomplete files (such as an in-progress
render).

Configuration settings for OpenEXR output

When opening an OpenEXR ImageOutput, the following special metadata tokens control aspects of the writing itself:

Output Configuration At- | Type Meaning
tribute
oiio:RawColor int If nonzero, writing images with non-RGB color models (such as
YCbCr) will keep unaltered pixel values (versus the default OIIO be-
havior of automatically converting from RGB to the designated color
space as the pixels are written).

oiio:ioproxy ptr Pointer to a Filesystem: : TOProxy that will handle the I/O, for
example by writing to a memory buffer.

Custom I/O Overrides

OpenEXR input and output both support the “custom I/O” feature via the special "oiio:ioproxy" attributes (see
Sections sec-imageoutput-ioproxy and Custom 1/O proxies (and reading the file from a memory buffer)) as well as the
set_ioproxy () methods.

A note on channel names

The underlying OpenEXR library (1ibI1mImf) always saves channels into lexicographic order, so the channel order
on disk (and thus when read!) will NOT match the order when the image was created.

But in order to adhere to OIIO’s convention that RGBAZ will always be the first channels (if they exist), OIIO’s
OpenEXR reader will automatically reorder just those channels to appear at the front and in that order. All other
channel names will remain in their relative order as presented to OIIO by 1ibI1lmImf.

Limitations

* The OpenEXR format only supports HALF, FLOAT, and UINT32 pixel data. OpenlmagelO’s OpenEXR writer
will silently convert data in formats (including the common UINTS8 and UINT16 cases) to HALF data for output.

6.17. OpenEXR 131

OpenimagelO, Release 2.3.9

6.18 OpenVDB

OpenVDB is an open-source volume data file format. OpenVDB files commonly use the extension . vdb. The official
OpenVDB site is: http://www.openvdb.org/ Currently, OpenlmagelO only reads OpenVDB files, and does not write
them.

Volumes are comprised of multiple layers (which appear to OpenlmagelO as subimages). Each layer/subimage may
have a different name, resolution, and coordinate mapping. Layers may be scalar (1 channel) or vector (3 channel)
fields, and the voxel data are always f1oat. OpenVDB files always report as tiled, using the leaf dimension size.

ImageSpec Attribute Type OpenVDB header data or explanation
ImageDescription string Description of image element
oiio:subimagename string unique layer name
openvdb:indextoworld | ma- conversion of voxel index to world space coordinates.
trix of
doubles
openvdb:worldtoindex | ma- conversion of world space coordinates to voxel index.
trix of
doubles
worldtocamera matrix World-to-local coordinate mapping.

6.19 PNG

PNG (Portable Network Graphics) is an image file format developed by the open source community as an alternative
to the GIF, after Unisys started enforcing patents allegedly covering techniques necessary to use GIF. PNG files use
the file extension . png.

Attributes
ImageSpec Attribute Type PNG header data or explanation
ImageDescription string Description
Artist string Author
DocumentName string Title
DateTime string the timestamp in the PNG header
PixelAspectRatio float pixel aspect ratio
XResolution, resolution and units from the PNG header.
YResolution,
ResolutionUnit
oiio:ColorSpace string Color space (see Section Color information).
oiio:Gamma float the gamma correction value (if specified).
ICCProfile uint8[] The ICC color profile

Configuration settings for PNG input

When opening an PNG Imagelnput with a configuration (see Section sec-inputwithconfig), the following special
configuration attributes are supported:

132 Chapter 6. Bundled ImagelO Plugins

http://www.openvdb.org/

OpenimagelO, Release 2.3.9

Input Configuration At- | Type Meaning

tribute

oiio:UnassociatedAlpha int If nonzero, will leave alpha unassociated (versus the default of pre-
multiplying color channels by alpha if the alpha channel is unassoci-
ated).

oiio:ioproxy ptr Pointer to a Filesystem: : TOProxy that will handle the I/O, for
example by reading from memory rather than the file system.

Configuration settings for PNG output

When opening an PNG ImageOutput, the following special metadata tokens control aspects of the writing itself:

Output Configuration At- | Type Meaning
tribute
png:compressionLevel | int Compression level for zip/deflate compression, on a scale from 0
(fastest, minimal compression) to 9 (slowest, maximal compression).
The default is 6. PNG compression is always lossless.

png:filter int Controls the “row filters” that prepare the image for optimal
compression. The default is 0 (PNG_NO_FILTERS), but other
values (which may be “or-ed” or summed to combine their ef-
fects) are 8 (PNG_FILTER_NONE), 16 (PNG_FILTER_SUB),
32 (PNG_FILTER_UP), 64 (PNG_FILTER_AVG), or 128
(PNG_FILTER_PAETH).

oiio:ioproxy ptr Pointer to a Filesystem: : IOProxy that will handle the I/O, for
example by writing to a memory buffer.
oiio:dither int If nonzero and outputting UINTS values in the file, will add a small

amount of random dither to combat the appearance of banding

Custom I/0 Overrides

PNG input and output both support the “custom I/O” feature via the special "oiio:ioproxy" attributes (see Sec-
tions sec-imageoutput-ioproxy and Custom 1/O proxies (and reading the file from a memory buffer)) as well as the
set_ioproxy () methods.

Limitations

* PNG stupidly specifies that any alpha channel is “unassociated” (i.e., that the color channels are not “premulti-
plied” by alpha). This is a disaster, since it results in bad loss of precision for alpha image compositing, and even
makes it impossible to properly represent certain additive glows and other desirable pixel values. OpenlmagelO
automatically associates alpha (i.e., multiplies colors by alpha) upon input and deassociates alpha (divides colors
by alpha) upon output in order to properly conform to the OIIO convention (and common sense) that all pixel
values passed through the OIIO APIs should use associated alpha.

* PNG only supports UINT8 and UINT16 output; other requested formats will be automatically converted to one
of these.

6.19. PNG 133

OpenimagelO, Release 2.3.9

6.20 PNM / Netpbm

The Netpbm project, a.k.a. PNM (portable “any” map) defines PBM, PGM, and PPM (portable bitmap, portable
graymap, portable pixmap) files. Without loss of generality, we will refer to these all collectively as “PNM.” These
files have extensions .pbm, .pgm, and .ppm and customarily correspond to bi-level bitmaps, 1-channel grayscale,
and 3-channel RGB files, respectively, or . pnm for those who reject the nonsense about naming the files depending
on the number of channels and bitdepth.

PNM files are not much good for anything, but because of their historical significance and extreme simplicity (that
causes many “‘amateur” programs to write images in these formats), OpenlmagelO supports them. PNM files do not
support floating point images, anything other than 1 or 3 channels, no tiles, no multi-image, no MIPmapping. It’s not
a smart choice unless you are sending your images back to the 1980’s via a time machine.

ImageSpec Attribute Type PNM header data or explanation

oiio:BitsPerSample int The true bits per sample of the file (1 for true PBM files, even though
OIIO will report the format as UINTS).

pnm:binary int nonzero if the file itself used the PNM binary format, 0 if it used
ASCIIL The PNM writer honors this attribute in the ImageSpec to de-
termine whether to write an ASCII or binary file.

6.21 PSD

PSD is the file format used for storing Adobe PhotoShop images. OpenlmagelO provides limited read abilities for
PSD, but not currently the ability to write PSD files.

Configuration settings for PSD input

When opening an Imagelnput with a configuration (see Section sec-inputwithconfig), the following special configura-
tion options are supported:

Input Configuration At- | Type Meaning
tribute
oiio:RawColor int If nonzero, reading images with non-RGB color models (such as
YCbCr or CMYK) will return unaltered pixel values (versus the de-
fault OIIO behavior of automatically converting to RGB).

Currently, the PSD format reader supports color modes RGB, CMYK, multichannel, grayscale, indexed, and bitmap.
It does NOT currenty support Lab or duotone modes.

134 Chapter 6. Bundled ImagelO Plugins

OpenimagelO, Release 2.3.9

6.22 Ptex

Ptex is a special per-face texture format developed by Walt Disney Feature Animation. The format and software to
read/write it are open source, and available from http://ptex.us/. Ptex files commonly use the file extension . ptex.

OpenlmagelO’s support of Ptex is still incomplete. We can read pixels from Ptex files, but the TextureSystem doesn’t
properly filter across face boundaries when using it as a texture. OpenlmagelO currently does not write Ptex files at
all.

ImageSpec Attribute Type Ptex header data or explanation

ptex:meshType string the mesh type, either "triangle" or "quad".

ptex:hasEdits int nonzero if the Ptex file has edits.

wrapmode string the wrap mode as specified by the Ptex file.

other Any other arbitrary metadata in the Ptex file will be stored directly as
attributes in the ImageSpec.

6.23 RAW digital camera files

A variety of digital camera “raw” formats are supported via this plugin that is based on the LibRaw library (http:
/Iwww.libraw.org/).

Configuration settings for RAW input

When opening an Imagelnput with a configuration (see Section sec-inputwithconfig), the following special configura-
tion options are supported:

6.22. Ptex 135

http://ptex.us/
http://www.libraw.org/
http://www.libraw.org/

OpenimagelO, Release 2.3.9

Input Configuration At- | Type Meaning
tribute
raw:auto_bright int If nonzero, will use libraw’s exposure correction. (Default: 0)
raw:use_camera_wb int If 1, use libraw’s camera white balance adjustment. (Default: 1)
raw:use_camera_matrix| int Whether to use the embedded color profile, if it’s present: 0 = never,
1 (default) = only for DNG files, 3 = always.
raw:adjust_maximum_tht float If nonzero, auto-adjusting maximum value. (Default:0.0)
raw:user_sat int If nonzero, sets the camera maximum value that will be normalized to
appear saturated. (Default: 0)

raw:aber float[2] | Red and blue scale factors for chromatic aberration correction when
decoding the raw image. The default (1,1) means to perform no cor-
rection. This is an overall spatial scale, sensible values will be very
close to 1.0.

raw:half size int If nonzero, outputs the image in half size. (Default: 0)
raw:user_mul float[4] | Sets wuser white balance coefficients. Only applies if
raw:use_camera_wb is not equal to 0.

raw:ColorSpace string Which color primaries to use for the returned pixel values: raw,
SRGB, sRGB-1linear (sRGB primaries, but a linear transfer func-
tion), Adobe, Wide, ProPhoto, ProPhoto-linear, XYZ,
ACES (only supported by LibRaw >= 0.18), DCI-P3 (LibRaw >=
0.21), Rec2020 (LibRaw >= 0.2). (Default: sRGB)
raw:Exposure float Amount of exposure before de-mosaicing, from 0.25 (2 stop darken)
to 8 (3 stop brighten). (Default: 0, meaning no correction.)
raw:Demosaic string Force a demosaicing algorithm: 1inear, VNG, PPG, AHD (default),
DCB, AHD-Mod, AFD, VCD, Mixed, LMMSE, AMaZE, DHT, AAHD,
none.

raw:HighlightMode int Set libraw highlight mode processing: 0 = clip, 1 = unclip, 2 = blend,
3+ =rebuild. (Default: 0.)

raw:balance_clamped int If nonzero, balance any clamped highlight values in the image. Re-
solves issues where highlights take on an undesired hue shift due to in-
congruous channel sensor saturation. Enabling this option will change
the output datatype to HALF. (Default: 0)
raw:apply_scene_linearimcale | If nonzero, applies an additional multiplication to the pixel values re-
turned by libraw. See raw: camera_to_scene_linear_scale
for more details. Enabling this option will change the output datatype
to HALF. (Default: 0)
raw:camera_to_scene_lifleatr_sqaWailst the libraw pixel values are linear, they are normalized based on
the whitepoint / sensor / ISO and shooting conditions. An additional
multiplication is needed to bring exposure levels up so that a correctly
photographed 18% grey card has pixel values at 0.18. Setting this
metadata key implies raw:apply_scene_linear_scale. En-
abling this option will change the output datatype to HALF. (Default:
2.2222222222222223 (1.0/0.45))

raw:user_flip int Set libraw user flip value : -1 ignored, other values are between [0; 8]
with the same definition than the Exif orientation code.

136 Chapter 6. Bundled ImagelO Plugins

OpenimagelO, Release 2.3.9

6.24 RLA

RLA (Run-Length encoded, version A) is an early CGI renderer output format, originating from Wavefront Advanced
Visualizer and used primarily by software developed at Wavefront. RLA files commonly use the file extension . rla.

ImageSpec Attribute Type RLA header data or explanation
width, height, x, vy int RLA “active/viewable” window.
full_width, int RLA “full” window.
full_height, full_x,
full_ y
rla:FrameNumber int frame sequence number.
rla:Revision int file format revision number, currently OxFFFE.
rla:JobNumber int job number ID of the file.
rla:FieldRendered int whether the image is a field-rendered (interlaced) one O for false, non-
zero for true.
rla:FileName string name under which the file was orignally saved.
ImageDescription string RLA “Description” of the image.
Software string name of software used to save the image.
HostComputer string name of machine used to save the image.
Artist string RLA “UserName”: logon name of user who saved the image.
rla:Aspect string aspect format description string.
rla:ColorChannel string textual description of color channel data format (usually rgb).
rla:Time string description (format not standardized) of amount of time spent on cre-
ating the image.
rla:Filter string name of post-processing filter applied to the image.
rla:AuxData string textual description of auxiliary channel data format.
rla:AspectRatio float image aspect ratio.
rla:RedChroma vec2 or | red point XY (vec2) or XYZ (vec3) coordinates.
vec3 of
floats
rla:GreenChroma vec2 or | green point XY (vec2) or XYZ (vec3) coordinates.
vec3 of
floats
rla:BlueChroma vec2 or | blue point XY (vec2) or XYZ (vec3) coordinates.
vec3 of
floats
rla:WhitePoint vec2 or | white point XY (vec2) or XYZ (vec3) coordinates.
vec3 of
floats
oiio:ColorSpace string Color space (see Section Color information).
oiio:Gamma float the gamma correction value (if specified).
Limitations

* OpenlmagelO will only write a single image to each file, multiple subimages are not supported by the writer
(but are supported by the reader).

6.24. RLA 137

OpenimagelO, Release 2.3.9

6.25 SGl

The SGI image format was a simple raster format used long ago on SGI machines. SGI files use the file extensions
sgi, rgb, rgba, bw, int, and inta.

The SGI format is sometimes used for legacy apps, but has little merit otherwise: no support for tiles, no MIPmaps,
no multi-subimage, only 8- and 16-bit integer pixels (no floating point), only 1-4 channels.

ImageSpec Attribute Type SGI header data or explanation
compression string The compression of the SGI file (r1e, if RLE compression is used).
ImageDescription string Image name.

6.26 Softimage PIC

Softimage PIC is an image file format used by the SoftImage 3D application, and some other programs that needed to
be compatible with it. Softimage files use the file extension .pic.

The Softimage PIC format is sometimes used for legacy apps, but has little merit otherwise, so currently OpenlmagelO
only reads Softimage files and is unable to write them.

ImageSpec Attribute Type PIC header data or explanation

compression string The compression of the SGI file (r 1e, if RLE compression is used).
ImageDescription string Comment

oiio:BitsPerSample int the true bits per sample of the PIC file.

138

Chapter 6. Bundled ImagelO Plugins

OpenimagelO, Release 2.3.9

6.27 Targa

Targa (a.k.a. Truevision TGA) is an image file format with little merit except that it is very simple and is used by many
legacy applications. Targa files use the file extension . tga, or, much more rarely, . tpic. The official Targa format
specification may be found at: http://www.dca.fee.unicamp.br/~martino/disciplinas/ea978/tgafts.pdf

ImageSpec Attribute Type TGA header data or explanation

ImageDescription string Comment

Artist string author

DocumentName string job name/ID

Software string software name

DateTime string TGA time stamp

targa:JobTime string TGA “job time.”

compression string values of none and rle are supported. The writer will use RLE
compression if any unknown compression methods are requested.

targa:ImagelD string Image ID

PixelAspectRatio float pixel aspect ratio

oiio:BitsPerSample int the true bits per sample of the PIC file.

oiio:ColorSpace string Color space (see Section Color information).

oiio:Gamma float the gamma correction value (if specified).

If the TGA file contains a thumbnail, its dimensions will be stored in the attributes "thumbnail_width",
"thumbnail_height", and "thumbnail nchannels", and the thumbnail pixels themselves
will be retrievable via ImageInput::get_thumbnail() or ImageBuf::thumbnail() or
ImageCache: :get_thumbnail ().

Limitations

e The Targa reader reserves enough memory for the entire image. Therefore it is not a good choice for high-
performance image use such as would be used for ImageCache or TextureSystem.

* Targa files only support 8- and 16-bit unsigned integers (no signed, floating point, or HDR capabilities); the
OpenlmagelO TGA writer will silently convert all output images to UINT8 (except if UINT16 is explicitly
requested).

 Targa only supports grayscale, RGB, and RGBA; the OpenlmagelO TGA writer will fail its call to open () if
it is asked create a file with more than 4 color channels.

6.28 Term (Terminal)

This experimental output-only “format” is actually a procedural output that writes a low-res representation of the
image to the console output. It requires a terminal application that supports Unicode and 24 bit color extensions.

The term ImageOutput supports the following special metadata tokens to control aspects of the writing itself:

6.27. Targa 139

http://www.dca.fee.unicamp.br/~martino/disciplinas/ea978/tgaffs.pdf

OpenimagelO, Release 2.3.9

Output Configuration At- | Type Meaning

tribute

term:method string May be one of iterm2, 24bit (default), 24bit-space,
256color,ordither.

term: fit int If 1 (the default), the image will be resized to fit on the console win-
dow.

The iterm2 mode is the best quality and is the default mode when actually running on a Mac and launching using
iTerm?2 as the terminal. This mode uses iTerm?2’s nonstandard extension to directly output an pixel array to be visible
in the terminal.

The default in other circumstances is the 24bit mode, which displays two approximately square pixels vertically in
each character cell, by outputting the Unicode “upper half block™ glyph (\u2508) with the foreground color set to
the top pixel’s color and the background color set to the bottom pixel’s color.

If this doesn’t look right, or your terminal doesn’t support Unicode, the 24bit—-space is an alternate mode that
displays one elongated pixel in each character cell, writing a space character with the correct color.

There’s also a 256color method that just uses the 6x6x6 color space in the 256 color palette — which looks horrible
— and an experimental dither which does a half-assed Floyd-Steinberg dithering, horizontally only, and frankly is
not an improvement unless you squint really hard. These may change or be eliminted in the future.

In all cases, the image will automatically be resized to fit in the terminal and keep approximately the correct aspect
ratio, as well as converted to sSRGB so it looks kinda ok.

6.29 TIFF

TIFF (Tagged Image File Format) is a flexible file format created by Aldus, now controlled by Adobe. TIFF supports
nearly everything anybody could want in an image format (and has extactly the complexity you would expect from
such a requirement). TIFF files commonly use the file extensions .tif or, .tiff. Additionally, OpenlmagelO
associates the following extensions with TIFF files by default: .tx, .env, .sm, .vsm.

The official TIFF format specification may be found here: http://partners.adobe.com/public/developer/tiff/index.html
The most popular library for reading TIFF directly is 1ibt i £ f, available here: http://www.remotesensing.org/libtiff/
OpenlmagelO uses 1ibtiff for its TIFF reading/writing.

We like TIFF a lot, especially since its complexity can be nicely hidden behind OIIO’s simple APIs. It supports a
wide variety of data formats (though unfortunately not half), an arbitrary number of channels, tiles and multiple
subimages (which makes it our preferred texture format), and a rich set of metadata.

OpenlmagelO supports the vast majority of TIFF features, including: tiled images (ti1led) as well as scanline im-
ages; multiple subimages per file (multiimage); MIPmapping (using multi-subimage; that means you can’t use
multiimage and MIPmaps simultaneously); data formats 8- 16, and 32 bit integer (both signed and unsigned), and
32- and 64-bit floating point; palette images (will convert to RGB); “miniswhite” photometric mode (will convert to
“minisblack™).

The TIFF plugin attempts to support all the standard Exif, IPTC, and XMP metadata if present.
Configuration settings for TIFF input

When opening an Imagelnput with a configuration (see Section sec-inputwithconfig), the following special configura-
tion options are supported:

140 Chapter 6. Bundled ImagelO Plugins

http://partners.adobe.com/public/developer/tiff/index.html
http://www.remotesensing.org/libtiff/

OpenimagelO, Release 2.3.9

Input Configuration At- | Type Meaning
tribute
oiio:UnassociatedAlpha int If nonzero, and the file contains unassociated alpha, this will cause the
reader to leave alpha unassociated (versus the default of premultiply-
ing color channels by alpha if the alpha channel is unassociated).
oiio:RawColor int If nonzero, reading images with non-RGB color models (such as
YCbCr) will return unaltered pixel values (versus the default OIIO
behavior of automatically converting to RGB).

oiio:ioproxy ptr Pointer to a Filesystem: : IOProxy that will handle the I/O, for
example by reading from memory rather than the file system.

Configuration settings for TIFF output

When opening an ImageOutput, the following special metadata tokens control aspects of the writing itself:

Output Configuration At- | Type Meaning

tribute

oiio:UnassociatedAlpha int If nonzero, any alpha channel is understood to be unassociated, and
the EXTRASAMPLES tag in the TIFF file will be set to reflect this).

oiio:BitsPerSample int Requests a rescaling to a specific bits per sample (such as writing 12-
bit TIFFs).

tiff:write_exif int If zero, will not write any Exif data to the TIFF file. (The defaultis 1.)

tiff:half int If nonzero, allow writing TIFF files with half (16 bit float) pixels.
The default of O will automatically translate to float pixels, since most
non-OIIO applications will not properly read half TIFF files despite
their being legal.

tiff:ColorSpace string Requests that the file be saved with a non-RGB color spaces. Choices
are RGB, CMYK. % , YCbCr, CIELAB, ICCLAB, ITULAB.

tiff:zipquality int A time-vs-space knob for z ip compression, ranging from 1-9 (default
is 6). Higher means compress to less space, but taking longer to do
so. It is strictly a time vs space tradeoff, the visual image quality is
identical (lossless) no matter what the setting.

tiff:RowsPerStrip int Overrides TIFF scanline rows per strip with a specific request (if not
supplied, OIIO will choose a reasonable default).

oiio:ioproxy ptr Pointer to a Filesystem: : IOProxy that will handle the 1/O, for
example by writing to memory rather than the file system.

TIFF compression modes

The full list of possible TIFF compression mode values are as follows ($ 2*$ indicates that OpenlmagelO can write
that format, and is not part of the format name):

none $ M*$ 1zw $ M*$ zip $ M*$ ccitt_t4 ccitt_t6 ccittfax3 ccittfax4 ccittrle?
ccittrle $ "*$ dcs isojbig IT8BL IT8CTPAD IT8LW IT8MP Jp2000 jpeg $ ~*$
lzma next ojpeg packbits $ **$ pixarfilm pixarlog sgilog24 sgilog T43 T85
thunderscan

Custom I/O Overrides

TIFF input (but, currently, not output) supports the “custom I/O” feature via the ImageInput: :set_ioproxy ()
method and the special "oiio:ioproxy" attributes (see Section Custom I/O proxies (and reading the file from a
memory buffer)).

Limitations

OpenlmagelO’s TIFF reader and writer have some limitations you should be aware of:

6.29. TIFF 141

OpenimagelO, Release 2.3.9

* No separate per-channel data formats (not supported by 1ibtiff).

e Only multiples of 8 bits per pixel may be passed through OpenlmagelO’s APIs, e.g., 1-, 2-, and 4-bits
per pixel will be passed by OIIO as 8 bit images; 12 bits per pixel will be passed as 16, etc. But the
olio:BitsPerSample attribute in the ImageSpec will correctly report the original bit depth of the file.
Similarly for output, you must pass 8 or 16 bit output, but oiio:BitsPerSample gives a hint about how
you want it to be when written to the file, and it will try to accommodate the request (for signed integers, TIFF
output can accommodate 2, 4, 8, 10, 12, and 16 bits).

* JPEG compression is limited to 8-bit per channel, 3-channel files.

TIFF Attributes

ImageSpec Attribute Type TIFF header data or explanation

ImageSpec: :x int XPosition

ImageSpec: :y int YPosition

ImageSpec::full_width| int PIXAR_IMAGEFULLWIDTH

ImageSpec::full_lengthint PIXAR_IMAGEFULLLENGTH

ImageDescription string ImageDescription

DateTime string DateTime

Software string Software

Artist string Artist

Copyright string Copyright

Make string Make

Model string Model

DocumentName string DocumentName

HostComputer string HostComputer

XResultion, float XResolution, YResolution

YResolution

ResolutionUnit string ResolutionUnit (in or cm).

Orientation int Orientation

ICCProfile uint8[] The ICC color profile

textureformat string PIXAR_TEXTUREFORMAT

wrapmodes string PIXAR_WRAPMODES

fovcot float PIXAR_FOVCOT

worldtocamera matrix PIXAR_MATRIX WORLDTOCAMERA

worldtoscreen matrix PIXAR_MATRIX_WORLDTOSCREEN

compression string based on TIFF Compression (one of none, 1zw, zip, or others listed
above).

tiff:compression int the original integer code from the TIFF Compression tag.

tiff:planarconfig string PlanarConfiguration (separate or contig). The OpenlmagelO
TIFF writer will honor such a request in the ImageSpec.

tiff:PhotometricInterpirttatignPhotometric

tiff:PageName string PageName

tiff:PageNumber int PageNumber

tiff:RowsPerStrip int RowsPerStrip

tiff:subfiletype int SubfileType

Exif:x A wide variety of EXIF data are honored, and are all prefixed with
Exif.

oiio:BitsPerSample int The actual bits per sample in the file (may differ from
ImageSpec: : format).

oiio:UnassociatedAlpha int Nonzero if the data returned by OIIO will have “unassociated” alpha.

continues on next page

142 Chapter 6. Bundled ImagelO Plugins

OpenimagelO, Release 2.3.9

Table 2 — continued from previous page

ImageSpec Attribute Type TIFF header data or explanation

tiff:UnassociatedAlpha int Nonzero if the data in the file had “unassociated” alpha (even if us-
ing the usual convention of returning associated alpha from the read
methods).

6.30 Webp

WebP is an image file format developed by Google that is intended to be an open standard for lossy-compressed images
for use on the web.

ImageSpec Attribute Type WebP header data or explanation
oiio:Movie int If nonzero, indicates that it’s a multi-subimage file indended to repre-
sent an animation.
oiio:LoopCount int Number of times the animation should be played (0-65535, O stands
for infinity).
gif:LoopCount int Deprecated synonym for oiio:LoopCount.
Limitations

* WebP only supports 3-channel (RGB) or 4-channel (RGBA) images and must be 8-bit unsigned integer pixel
values (uint8).

6.31 Zfile

Zfile is a very simple format for writing a depth (z) image, originally from Pixar’s PhotoRealistic RenderMan but
now supported by many other renderers. It’s extremely minimal, holding only a width, height, world-to-screen and
camera-to-screen matrices, and uncompressed float pixels of the z-buffer. Zfile files use the file extension .zfile.

ImageSpec Attribute Type Zfile header data or explanation
worldtocamera matrix NP
worldtoscreen matrix NI

6.30. Webp 143

OpenimagelO, Release 2.3.9

144 Chapter 6. Bundled ImagelO Plugins

CHAPTER
SEVEN

CACHED IMAGES

7.1 Image Cache Introduction and Theory of Operation

ImageCache is a utility class that allows an application to read pixels from a large number of image files while using a
remarkably small amount of memory and other resources. Of course it is possible for an application to do this directly
using Imagelnput objects. But ImageCache offers the following advantages:

* ImageCache presents an even simpler user interface than ImageInput — the only supported operations are asking
for an ImageSpec describing a subimage in the file, retrieving for a block of pixels, and locking/reading/releasing
individual tiles. You refer to images by filename only; you don’t need to keep track of individual file handles or
Imagelnput objects. You don’t need to explicitly open or close files.

* The ImageCache is completely thread-safe; if multiple threads are accessing the same file, the ImageCache
internals will handle all the locking and resource sharing.

* No matter how many image files you are accessing, the ImageCache will maintain a reasonable number of
simultaneously-open files, automatically closing files that have not been needed recently.

» No matter how large the total pixels in all the image files you are dealing with are, the ImageCache will use only
a small amount of memory. It does this by loading only the individual tiles requested, and as memory allotments
are approached, automatically releasing the memory from tiles that have not been used recently.

In short, if you have an application that will need to read pixels from many large image files, you can rely on Image-
Cache to manage all the resources for you. It is reasonable to access thousands of image files totalling hundreds of GB
of pixels, efficiently and using a memory footprint on the order of 50 MB.

Below are some simple code fragments that shows ImageCache in action:

#include <OpenImageIO/imagecache.h>
using namespace OIIO;

// Create an image cache and set some options

ImageCache xcache = ImageCache::create ();
cache->attribute ("max_memory_ MB", 500.0f);
cache->attribute ("autotile", 64);

// Get a block of pixels from a file.
// (for brevity of this example, let's assume that 'size' is the
// number of channels times the number of pixels in the requested region)
float pixels[sizel;
cache->get_pixels ("filel.jpg", 0, 0, xbegin, xend, ybegin, yend,
zbegin, zend, TypeDesc::FLOAT, pixels);

// Get information about a file
ImageSpec spec;

(continues on next page)

145

OpenimagelO, Release 2.3.9

(continued from previous page)

bool ok = cache->get_imagespec ("fileZ.exr", spec);
if (ok)
std::cout << "resolution is " << spec.width << "x"

<< spec.height << "\n";

// Request and hold a tile, do some work with its pixels, then release
ImageCache::Tile *tile;

tile = cache->get_tile ("file2.exr", 0, 0, x, Vv, z);

// The tile won't be freed until we release it, so this is safe:
TypeDesc format;

void x*p = cache->tile_pixels (tile, format);

// Now p points to the raw pixels of the tile, whose data format

// 1is given by 'format'.

cache->release_tile (tile);

// Now cache is permitted to free the tile when needed

// Note that all files were referenced by name, we never had to open
// or close any files, and all the resource and memory management

// was automatic.

ImageCache: :destroy (cache);

7.2 ImageCache API

class OIIO::ImageCache
Define an API to an abstract class that manages image files, caches of open file handles as well as tiles of pixels
so that truly huge amounts of image data may be accessed by an application with low memory footprint.

Creating and destroying an image cache

ImageCache is an abstract API described as a pure virtual class. The actual internal implementation is not
exposed through the external API of OpenlmagelO. Because of this, you cannot construct or destroy the concrete
implementation, so two static methods of ImageCache are provided:

static ImageCache *create (bool shared = true)
Create a ImageCache and return a raw pointer to it. This should only be freed by passing it to
ImageCache: :destroy()!

Return A raw pointer to an /mageCache, which can only be freed with TmageCache: :destroy ().
See ImageCache::destroy
Parameters

* shared: If t rue, the pointer returned will be a shared /mageCache (so that multiple parts of an
application that request an /mageCache will all end up with the same one). If sharedis false,
a completely unique /mageCache will be created and returned.

static void destroy (ImageCache *cache, bool teardown = false)
Destroy an allocated ImageCache, including freeing all system resources that it holds.

It is safe to destroy even a shared ImageCache, as the implementation of destroy () will recognize a
shared one and only truly release its resources if it has been requested to be destroyed as many times as
shared /mageCache’s were created.

146 Chapter 7. Cached Images

OpenimagelO, Release 2.3.9

Parameters
* cache: Raw pointer to the /mageCache to destroy.

* teardown: For a shared ImageCache, if the teardown parameter is t rue, it will try to truly
destroy the shared cache if nobody else is still holding a reference (otherwise, it will leave it
intact). This parameter has no effect if cache was not the single globally shared /mageCache.

Setting options and limits for the image cache

These are the list of attributes that can bet set or queried by attribute/getattribute:

* int max_open_files : The maximum number of file handles that the image cache will hold open
simultaneously. (Default = 100)

e float max_memory_MB : The maximum amount of memory (measured in MB) used for the internal
“tile cache.” (Default: 256.0 MB)

* string searchpath : The search path for images: a colon-separated list of directories that will be
searched in order for any image filename that is not specified as an absolute path. (Default: “”)

* string plugin_searchpath : The search path for plugins: a colon-separated list of directories that
will be searched in order for any OIIO plugins, if not found in OIIO’s 1ib directory. (Default: “)

e int autotile, int autoscanline : These attributes control how the image cache deals with
images that are not “tiled” (i.e., are stored as scanlines).

If autotile is set to O (the default), an untiled image will be treated as if it were a single tile of the
resolution of the whole image. This is simple and fast, but can lead to poor cache behavior if you are
simultaneously accessing many large untiled images.

If autotile is nonzero (e.g., 64 is a good recommended value), any untiled images will be read and
cached as if they were constructed in tiles of size:

- Tautotile * autotile’
if ‘autoscanline’ is 0
- “width * autotile”
if ‘autoscanline’ is nonzero.

In both cases, this should lead more efficient caching. The autoscanline determines whether the
“virtual tiles” in the cache are square (if autoscanline is 0, the default) or if they will be as wide as
the image (but only autotile scanlines high). You should try in your application to see which leads to
higher performance.

e int autoscanline : autotile using full width tiles

* int automip : If O (the default), an untiled single-subimage file will only be able to utilize that single
subimage. If nonzero, any untiled, single-subimage (un-MIP-mapped) images will have lower-resolution
MIP-map levels generated on-demand if pixels are requested from the lower-res subimages (that don’t
really exist). Essentially this makes the /mageCache pretend that the file is MIP-mapped even if it isn’t.

* int accept_untiled : When nonzero, ImageCache accepts untiled images as usual. When zero,
ImageCache will reject untiled images with an error condition, as if the file could not be properly read.
This is sometimes helpful for applications that want to enforce use of tiled images only. (default=1)

* int accept_unmipped : When nonzero, ImageCache accepts un-MIPmapped images as usual.
When set to zero, ImageCache will reject un-MIPmapped images with an error condition, as if the file

7.2. ImageCache API 147

OpenimagelO, Release 2.3.9

could not be properly read. This is sometimes helpful for applications that want to enforce use of MIP-
mapped images only. (Default: 1)

int statistics:level : verbosity of statistics auto-printed.

int forcefloat : If set to nonzero, all image tiles will be converted to £1oat type when stored in
the image cache. This can be helpful especially for users of ImageBuf who want to simplify their image
manipulations to only need to consider f1oat data. The default is zero, meaning that image pixels are
not forced to be £1oat when in cache.

int failure_retries : When an image file is opened or a tile/scanline is read but a file error
occurs, if this attribute is nonzero, it will try the operation again up to this many times before giving up
and reporting a failure. Setting this to a small nonzero number (like 3) may help make an application
more robust to occasional spurious networking or other glitches that would otherwise cause the entire
long-running application to fail upon a single transient error. (Default: 0)

int deduplicate : When nonzero, the /mageCache will notice duplicate images under different
names if their headers contain a SHA-1 fingerprint (as is done with maket x-produced textures) and han-
dle them more efficiently by avoiding redundant reads. The default is 1 (de-duplication turned on). The
only reason to set it to O is if you specifically want to disable the de-duplication optimization.

string substitute_image : When set to anything other than the empty string, the /mageCache
will use the named image in place of all other images. This allows you to run an app using OIIO and
(if you can manage to get this option set) automagically substitute a grid, zone plate, or other special
debugging image for all image/texture use.

int unassociatedalpha : When nonzero, will request that image format readers try to leave input
images with unassociated alpha as they are, rather than automatically converting to associated alpha upon
reading the pixels. The default is O, meaning that the automatic conversion will take place.

int max_errors_per_file: The maximum number of errors that will be printed for each file. The
default is 100. If your output is cluttered with error messages and after the first few for each file you aren’t
getting any helpful additional information, this can cut down on the clutter and the runtime. (default: 100)

int trust_file_extensions : When nonzero, assume that the file extensions of any texture re-
quests correctly indicates the file format (when enabled, this reduces the number of file opens, at the
expense of not being able to open files if their format do not actually match their filename extension).
Default: 0

string options This catch-all is simply a comma-separated list of name=value settings of named
options, which will be parsed and individually set. Example:

ic—>attribute ("options", "max_memory_MB=512.0,autotile=1");

Note that if an option takes a string value that must itself contain a comma, it is permissible to enclose the
value in either single C “ ©) or double (””7)quotes.

Read-only attributes

Additionally, there are some read-only attributes that can be queried with getattribute () even though they
cannot be set via attribute ():

int total_files : The total number of unique file names referenced by calls to the /mageCache.

string[] all_filenames : An array that will be filled with the list of the names of all files refer-
enced by calls to the ImageCache. (The array is of ustring or charx.)

int64 stat:cache_memory_used : Total bytes used by tile cache.

148

Chapter 7. Cached Images

OpenimagelO, Release 2.3.9

e int stat:tiles_created, int stat:tiles_current, int stat:tiles_peak : Total
times created, still allocated (at the time of the query), and the peak number of tiles in memory at any time.

e int stat:open_files_created N int stat:open_files_current N int
stat:open_files_peak : Total number of times a file was opened, number still opened (at
the time of the query), and the peak number of files opened at any time.

e int stat:find_tile_calls : Number of times a filename was looked up in the file cache.

* int64 stat:image_size : Total size (uncompressed bytes of pixel data) of all images referenced
by the ImageCache. (Note: Prior to 1.7, this was called stat:files_totalsize.)

e int64 stat:file_size : Total size of all files (as on disk, possibly compressed) of all images
referenced by the /mageCache.

* int64 stat:bytes_read : Total size (uncompressed bytes of pixel data) read.

e int stat:unique_files : Number of unique files opened.

e float stat:fileio_time : Total I/O-related time (seconds).

e float stat:fileopen_time : I/O time related to opening and reading headers (but not pixel I/O).

e float stat:file_locking_time : Total time (across all threads) that threads blocked waiting for
access to the file data structures.

e float stat:tile_locking_time : Total time (across all threads) that threads blocked waiting for
access to the tile cache data structures.

e float stat:find_file_time : Total time (across all threads) that threads spent looking up files
by name.

e float stat:find_tile_time : Total time (across all threads) that threads spent looking up indi-
vidual tiles.

The following member functions of /mageCache allow you to set (and in some cases retrieve) options that
control the overall behavior of the image cache:

virtual bool attribute (string_view name, TypeDesc type, const void *val) =0
Set a named attribute (i.e., a property or option) of the /mageCache.

Example:

ImageCache «*ic;

int maxfiles = 50;

ic—>attribute ("max_open_files", TypeDesc::INT, smaxfiles);
const char xpath = "/my/path";

ic->attribute ("searchpath", TypeDesc::STRING, &path);

// There are specialized versions for setting a single int,
// float, or string without needing types or pointers:
ic->attribute ("max_open_files", 50);

ic->attribute ("max_memory_MB", 4000.0f);

ic—>attribute ("searchpath", "/my/path");

Note: When passing a string, you need to pass a pointer to the char «, not a pointer to the first character.
(Rationale: for an int attribute, you pass the address of the int. So for a string, which is a charx, you
need to pass the address of the string, i.e., a char*x).

7.2. ImageCache API 149

OpenimagelO, Release 2.3.9

Return true if the name and type were recognized and the attribute was set, or false upon failure

(including it being an unrecognized attribute or not of the correct type).
Parameters
e name: Name of the attribute to set.
* type: TypeDesc describing the type of the attribute.
* val: Pointer to the value data.

virtual bool attribute (string_view name, int val) =0
Specialized attribute () for setting a single int value.

virtual bool attribute (string_view name, float val) =0
Specialized att ribute () for setting a single f1oat value.

virtual bool attribute (string_view name, string_view val) =0
Specialized attribute () for setting a single string value.

virtual bool getattribute (string_view name, TypeDesc type, void *val) const =0

Get the named attribute, store it in xval. All of the attributes that may be set with the attribute ()

call may also be queried with getattribute ().

Examples:

ImageCache «*ic;

int maxfiles;
ic->getattribute ("max_open_files", TypeDesc::INT, &maxfiles);

const char xpath;
ic->getattribute ("searchpath", TypeDesc::STRING, &path);

// There are specialized versions for retrieving a single int,
// float, or string without needing types or pointers:

int maxfiles;

ic->getattribute ("max_open_files", maxfiles);

const char xpath;

ic->getattribute ("searchpath", &path);

Note: When retrieving a string, you need to pass a pointer to the char *, not a pointer to the first character.
Also, the char+ will end up pointing to characters owned by the /mageCache; the caller does not need to
ever free the memory that contains the characters.

Return true if the name and type were recognized and the attribute was retrieved, or false upon
failure (including it being an unrecognized attribute or not of the correct type).

Parameters
* name: Name of the attribute to retrieve.
* type: TypeDesc describing the type of the attribute.

e val: Pointer where the attribute value should be stored.

virtual bool getattribute (string_view name, int &val) const =0

Specialized attribute () for retrieving a single int value.

virtual bool getattribute (siring_view name, float &val) const =0

Specialized att ribute () for retrieving a single £ loat value.

150

Chapter 7. Cached Images

OpenimagelO, Release 2.3.9

virtual bool getattribute (siring_view name, char **val) const =0
Specialized att ribute () for retrieving a single st ring value as a char*.

virtual bool getattribute (string_view name, std::string &val) const =0
Specialized attribute () for retrieving a single string value as a std: : string.

Opaque data for performance lookups

The ImageCache implementation needs to maintain certain per-thread state, and some methods take an opaque
Perthread pointer to this record. There are three options for how to deal with it:

a. Don’t worry about it at all: don’t use the methods that want Perthread pointers, or always pass
nullptr for any "Perthread*1 arguments, and /mageCache will do thread-specific-pointer retrieval as
necessary (though at some small cost).

b. If your app already stores per-thread information of its own, you may call
get_perthread_info (nullptr) to retrieve it for that thread, and then pass it into the func-
tions that allow it (thus sparing them the need and expense of retrieving the thread-specific pointer).
However, it is crucial that this pointer not be shared between multiple threads. In this case, the /mageCache
manages the storage, which will automatically be released when the thread terminates.

c. If your app also wants to manage the storage of the Perthread, it can explicitly create one with
create_perthread_info (), pass it around, and eventually be responsible for destroying it with
destroy_perthread_info (). When managing the storage, the app may reuse the Perthread for
another thread after the first is terminated, but still may not use the same Perthread for two threads
running concurrently.

typedef pvt::ImageCachePerThreadlnfo Perthread
Define an opaque data type that allows us to have a pointer to certain per-thread information that the
ImageCache maintains. Any given one of these should NEVER be shared between running threads.

typedef pvt::ImageCacheFile ImageHandle
Define an opaque data type that allows us to have a handle to an image (already having its name resolved)
but without exposing any internals.

virtual Perthread *get_perthread_info (Perthread *thread_info = NULL) =0
Retrieve a Perthread, unique to the calling thread. This is a thread-specific pointer that will always return
the Perthread for a thread, which will also be automatically destroyed when the thread terminates.

Applications that want to manage their own Perthread pointers (with create_thread_info and
destroy_thread_info) should still call this, but passing in their managed pointer. If the passed-
in thread_info is not NULL, it won’t create a new one or retrieve a TSP, but it will do other necessary
housekeeping on the Perthread information.

virtual Perthread *create_thread info () =0
Create a new Perthread. It is the -caller’s responsibility to eventually destroy it using
destroy_thread _info().

virtual void destroy_thread_info (Perthread *thread_info) =0
Destroy a Perthread that was allocated by create _thread _info ().

virtual /mageHandle *get_image_handle (ustring filename, Perthread *thread_info = NULL) =

0
Retrieve an opaque handle for fast image lookups. The opaque pointer thread_info is thread-
specific information returned by get_perthread info (). Return NULL if something has gone hor-
ribly wrong.

7.2.

ImageCache API 151

OpenimagelO, Release 2.3.9

virtual bool good (ImageHandle *file) =0
Return true if the image handle (previously returned by get_image_handle ()) is a valid image that
can be subsequently read.

virtual ustring £ilename_from_ handle (/mageHandle *handle) =0
Given a handle, return the filename for that image.

This method was added in OpenlmagelO 2.3.

Getting information about images

virtual std:string resolve_filename (const std::string &filename) const =0
Given possibly-relative £ilename, resolve it and use the true path to the file, with searchpath logic
applied.

virtual bool get_image_info (ustring filename, int subimage, int miplevel, ustring dataname,
TypeDesc datatype, void *data) =0
Get information or metadata about the named image and store it in xdata.

Data names may include any of the following:

* "exists": Stores the value 1 (as an int) if the file exists and is an image format that OpenlmagelO
can read, or O if the file does not exist, or could not be properly read as an image. Note that unlike all
other queries, this query will “succeed” (return t rue) even if the file does not exist.

e "udim" : Stores the value 1 (as an int) if the file is a “virtual UDIM” or texture atlas file (as
described in :ref:sec-texturesys—udim) or O otherwise.

e "subimages" : The number of subimages in the file, as an int.

e "resolution" : The resolution of the image file, which is an array of 2 integers (described as
TypeDesc (INT, 2)).

* "miplevels" : The number of MIPmap levels for the specified subimage (an integer).

* "texturetype" : A string describing the type of texture of the given file, which describes how
the texture may be used (also which texture API call is probably the right one for it). This currently
may return one of: "unknown", "Plain Texture", "Volume Texture", "Shadow", or
"Environment".

e "textureformat" : A string describing the format of the given file, which describes the kind
of texture stored in the file. This currently may return one of: "unknown", "Plain Texture",
"Volume Texture", "Shadow", "CubeFace Shadow", "Volume Shadow", "LatLong
Environment", or "CubeFace Environment". Note that there are several kinds of shadows
and environment maps, all accessible through the same API calls.

e "channels" : The number of color channels in the file (an int).

e "format" : The native data format of the pixels in the file (an integer, giving the
TypeDesc: :BASETYPE of the data). Note that this is not necessarily the same as the data for-
mat stored in the image cache.

e "cachedformat" : The native data format of the pixels as stored in the image cache (an integer,
giving the TypeDesc: : BASETYPE of the data). Note that this is not necessarily the same as the
native data format of the file.

* "datawindow" : Returns the pixel data window of the image, which is either an array of 4 integers
(returning xmin, ymin, Xmax, ymax) or an array of 6 integers (returning xmin, ymin, zmin, Xmax,
ymax, zmax). The z values may be useful for 3D/volumetric images; for 2D images they will be 0).

152

Chapter 7. Cached Images

OpenimagelO, Release 2.3.9

e "displaywindow" : Returns the display (a.k.a. “full”’) window of the image, which is either an
array of 4 integers (returning xmin, ymin, Xmax, ymax) or an array of 6 integers (returning xmin,
ymin, zmin, xmax, ymax, zmax). The z values may be useful for 3D/volumetric images; for 2D
images they will be 0).

e "worldtocamera" : The viewing matrix, which is a 4x4 matrix (an Imath: :M44f, described
as TypeDesc (FLOAT, MATRIX)), giving the world-to-camera 3D transformation matrix that was
used when the image was created. Generally, only rendered images will have this.

* "worldtoscreen" : The projection matrix, which is a 4x4 matrix (an Imath: :M44f£, described
as TypeDesc (FLOAT, MATRIX)), giving the matrix that projected points from world space into a
2D screen coordinate system where x and y range from -1 to +1. Generally, only rendered images
will have this.

* "worldtoNDC" : The projection matrix, which is a 4x4 matrix (an Imath: :M44f, described as
TypeDesc (FLOAT, MATRIX)), giving the matrix that projected points from world space into a 2D
NDC coordinate system where x and y range from O to +1. Generally, only rendered images will
have this.

* "averagecolor" : If available in the metadata (generally only for files that have been processed
by maketx), this will return the average color of the texture (into an array of f1oat).

e "averagealpha" : If available in the metadata (generally only for files that have been processed
by maketx), this will return the average alpha value of the texture (into a f1loat).

* "constantcolor" : If the metadata (generally only for files that have been processed by maket x)
indicates that the texture has the same values for all pixels in the texture, this will retrieve the constant
color of the texture (into an array of floats). A non-constant image (or one that does not have the
special metadata tag identifying it as a constant texture) will fail this query (return false).

e "constantalpha" : If the metadata indicates that the texture has the same values for all pixels
in the texture, this will retrieve the constant alpha value of the texture (into a float). A non-constant
image (or one that does not have the special metadata tag identifying it as a constant texture) will fail
this query (return false).

e "stat:tilesread" : Number of tiles read from this file (int 64).
* "stat:bytesread" : Number of bytes of uncompressed pixel data read from this file (int 64).

e "stat:redundant_tiles" : Number of times a tile was read, where the same tile had been rad
before. (int64).

* "stat:redundant_bytesread" : Number of bytes (of uncompressed pixel data) in tiles that
were read redundantly. (int 64).

e "stat:redundant_bytesread" : Number of tiles read from this file (int).

* "stat:image_size" : Size of the uncompressed image pixel data of this image, in bytes
(int64).

* "stat:file_size" : Size of the disk file (possibly compressed) for this image, in bytes (int 64).
* "stat:timesopened" : Number of times this file was opened (int).
* "stat:iotime" : Time (in seconds) spent on all I/O for this file (f1loat).

e "stat:mipsused" : Stores 1 if any MIP levels beyond the highest resolution were accessed,
otherwise 0. (int)

* "stat:is_duplicate" : Stores 1 if this file was a duplicate of another image, otherwise 0.
(int)

7.2. ImageCache API 153

OpenimagelO, Release 2.3.9

* Anything else : For all other data names, the the metadata of the image file will be searched for an
item that matches both the name and data type.

Return true if get_image_info () is able to find the requested dataname for the image and it
matched the requested datatype. If the requested data was not found or was not of the right data
type, return false. Except for the "exists" query, a file that does not exist or could not be read
properly as an image also constitutes a query failure that will return false.

Parameters
e filename: The name of the image.
* subimage/miplevel: The subimage and MIP level to query.
* dataname: The name of the metadata to retrieve.
* datatype: TypeDesc describing the data type.

* data: Pointer to the caller-owned memory where the values should be stored. It is the caller’s
responsibility to ensure that data points to a large enough storage area to accommodate the
datatype requested.

virtual bool get_image_info (ImageHandle *file, Perthread *thread_info, int subimage, int mi-
plevel, ustring dataname, TypeDesc datatype, void *data) =0
A more efficient variety of get_image_info () for cases where you can use an ImageHandlex to
specify the image and optionally have a Perthreadx for the calling thread.

virtual bool get_imagespec (ustring filename, ImageSpec &spec, int subimage = 0, int miplevel =

0, bool native = false) =0
Copy the ImageSpec associated with the named image (the first subimage & miplevel by default, or as set

by subimage and miplevel).

Return true upon success, false upon failure failure (such as being unable to find, open, or read the
file, or if it does not contain the designated subimage or MIP level).

Parameters
* filename: The name of the image.
* spec: ImageSpec into which will be copied the spec for the requested image.
* subimage/miplevel: The subimage and MIP level to query.

* native: If false (the default), then the spec retrieved will accurately describe the image
stored internally in the cache, whereas if native is true, the spec retrieved will reflect the
contents of the original file. These may differ due to use of certain /mageCache settings such as
"forcefloat" or "autotile".

virtual bool get_imagespec (ImageHandle *file, Perthread *thread_info, ImageSpec &spec, int
subimage = 0, int miplevel = 0, bool native = false) =0
A more efficient variety of get_imagespec () for cases where you can use an ImageHandlex to

specify the image and optionally have a Perthreadx for the calling thread.

virtual const [mageSpec *imagespec (ustring filename, int subimage = 0, int miplevel = 0, bool

native = false) =0
Return a pointer to an /mageSpec associated with the named image (the first subimage & MIP level by

default, or as set by subimage and miplevel) if the file is found and is an image format that can be
read, otherwise return nul lptr.

This method is much more efficient than get_imagespec (), since it just returns a pointer to the spec
held internally by the ImageCache (rather than copying the spec to the user’s memory). However, the caller

154 Chapter 7. Cached Images

OpenimagelO, Release 2.3.9

must beware that the pointer is only valid as long as nobody (even other threads) calls invalidate ()
on the file, or invalidate_all (), or destroys the ImageCache.

Return A pointer to the spec, if the image is found and able to be opened and read by an available image
format plugin, and the designated subimage and MIP level exists.

Parameters
* filename: The name of the image.
* subimage/miplevel: The subimage and MIP level to query.

* native: If false (the default), then the spec retrieved will accurately describe the image
stored internally in the cache, whereas if native is true, the spec retrieved will reflect the
contents of the original file. These may differ due to use of certain /mageCache settings such as
"forcefloat" or "autotile".

virtual const lmageSpec *imagespec (ImageHandle *file, Perthread *thread_info, int subimage =
0, int miplevel = 0, bool native = false) =0
A more efficient variety of imagespec () for cases where you can use an ImageHandlex to specify
the image and optionally have a Perthreadx for the calling thread.

virtual bool get_thumbnail (ustring filename, ImageBuf &thumbnail, int subimage =0) =0
Copy into thumbnail any associated thumbnail associated with this image (for the first subimage by
default, or as set by subimage).

Return true upon success, false upon failure failure (such as being unable to find, open, or read the
file, or if it does not contain a thumbnail).

Parameters
e filename: The name of the image.

e thumb: ImageBuf into which will be copied the thumbnail, if it exists. If no thumbnail can be
retrieved, t humb will be reset to an uninitialized (empty) ImageBuf.

* subimage: The subimage to query.

virtual bool get_thumbnail (ImageHandle *file, Perthread *thread_info, ImageBuf &thumbnail,
int subimage =0) =0
A more efficient variety of get_thumbnail () for cases where you can use an ImageHandlex to
specify the image and optionally have a Perthread~ for the calling thread.

Getting Pixels

virtual bool get_pixels (ustring filename, int subimage, int miplevel, int xbegin, int xend, int ybe-
gin, int yend, int zbegin, int zend, int chbegin, int chend, TypeDesc format,
void *result, stride_t xstride = AutoStride, stride_t ystride = AutoStride,
stride_t zstride = AutoStride, int cache_chbegin = 0, int cache_chend =

-1) =0
For an image specified by name, retrieve the rectangle of pixels from the designated subimage and MIP

level, storing the pixel values beginning at the address specified by result and with the given strides.
The pixel values will be converted to the data type specified by format. The rectangular region to be
retrieved includes begin but does not include end (much like STL begin/end usage). Requested pixels
that are not part of the valid pixel data region of the image file will be filled with zero values.

7.2.

ImageCache API 155

OpenimagelO, Release 2.3.9

Return true for success, false for failure.
Parameters
* filename: The name of the image.
* subimage/miplevel: The subimage and MIP level to retrieve pixels from.

* xbegin/xend/ybegin/yend/zbegin/zend: The range of pixels to retrieve. The pixels
retrieved include the begin value but not the end value (much like STL begin/end usage).

* chbegin/chend: Channel range to retrieve. To retrieve all channels, use chbegin = 0,
chend = nchannels.

* format: TypeDesc describing the data type of the values you want to retrieve into result. The
pixel values will be converted to this type regardless of how they were stored in the file.

* result: Pointer to the memory where the pixel values should be stored. It is up to the caller
to ensure that result points to an area of memory big enough to accommodate the requested
rectangle (taking into consideration its dimensions, number of channels, and data format).

* xstride/ystride/zstride: The number of bytes between the beginning of successive
pixels, scanlines, and image planes, respectively. Any stride values set to AutoStride will be
assumed to indicate a contiguous data layout in that dimension.

* cache_chbegin/cache_chend: These parameters can be used to tell the /mageCache to
read and cache a subset of channels (if not specified or if they denote a non-positive range, all the
channels of the file will be stored in the cached tile).

virtual bool get_pixels (ImageHandle *file, Perthread *thread_info, int subimage, int miplevel,
int xbegin, int xend, int ybegin, int yend, int zbegin, int zend, int chbe-
gin, int chend, TypeDesc format, void *result, stride_t xstride = Au-
toStride, stride_t ystride = AutoStride, stride_t zstride = AutoStride, int

cache_chbegin = 0, int cache_chend =-1) =0
A more efficient variety of get_pixels () for cases where you can use an ImageHandlex to specify

the image and optionally have a Perthreadx for the calling thread.

virtual bool get_pixels (ustring filename, int subimage, int miplevel, int xbegin, int xend, int ybe-
gin, int yend, int zbegin, int zend, TypeDesc format, void *result) =0
A simplified get_pixels () where all channels are retrieved, strides are assumed to be contiguous.

virtual bool get_pixels (ImageHandle *file, Perthread *thread_info, int subimage, int miplevel,
int xbegin, int xend, int ybegin, int yend, int zbegin, int zend, TypeDesc
format, void *result) =0
A more efficient variety of get_pixels () for cases where you can use an ImageHandlex to specify

the image and optionally have a Perthreadx for the calling thread.

Controlling the cache

typedef pvt::ImageCacheTile Tile
An opaque data type that allows us to have a pointer to a tile but without exposing any internals.

virtual void invalidate (ustring filename, bool force = true) =0
Invalidate any loaded tiles or open file handles associated with the filename, so that any subsequent queries
will be forced to re-open the file or re-load any tiles (even those that were previously loaded and would
ordinarily be reused). A client might do this if, for example, they are aware that an image being held
in the cache has been updated on disk. This is safe to do even if other procedures are currently holding
reference-counted tile pointers from the named image, but those procedures will not get updated pixels
until they release the tiles they are holding.

156

Chapter 7. Cached Images

OpenimagelO, Release 2.3.9

If force is true, this invalidation will happen unconditionally; if false, the file will only be invalidated if
it has been changed since it was first opened by the /mageCache.

virtual void invalidate (/mageHandle *file, bool force = true) =0
A more efficient variety of invalidate () for cases where you already have an ImageHandlex for
the file you want to invalidate.

virtual void invalidate_all (bool force = false) =0
Invalidate all loaded tiles and close open file handles. This is safe to do even if other procedures are
currently holding reference-counted tile pointers from the named image, but those procedures will not get
updated pixels (if the images change) until they release the tiles they are holding.

If force is true, everything will be invalidated, no matter how wasteful it is, but if force is false, in
actuality files will only be invalidated if their modification times have been changed since they were first
opened.

virtual void close (ustring filename) =0
Close any open file handles associated with a named file, but do not invalidate any image spec information
or pixels associated with the files. A client might do this in order to release OS file handle resources, or to
make it safe for other processes to modify image files on disk.

virtual void close_all () =0
close () all files known to the cache.

virtual Tile *get_tile (ustring filename, int subimage, int miplevel, int x, int y, int z, int chbegin =

0, int chend =-1) =0
Find the tile specified by an image filename, subimage & miplevel, the coordinates of a pixel, and op-

tionally a channel range. An opaque pointer to the tile will be returned, or nullptr if no such file
(or tile within the file) exists or can be read. The tile will not be purged from the cache until after
release_tile () is called on the tile pointer the same number of times that get_tile () was called
(reference counting). This is thread-safe! If chend < chbegin, it will retrieve a tile containing all
channels in the file.

virtual Tile *get_tile (ImageHandle *file, Perthread *thread_info, int subimage, int miplevel, int
X, int y, int z, int chbegin = 0, int chend =-1) =0
A slightly more efficient variety of get_tile () for cases where you can use an ImageHandlex to
specify the image and optionally have a Perthread~ for the calling thread.

See get_pixels()

virtual void release_tile (7ile *tile) const =0
After finishing with a tile, release_tile will allow it to once again be purged from the tile cache if required.

virtual TypeDesc tile_format (const Tile *tile) const =0
Retrieve the data type of the pixels stored in the tile, which may be different than the type of the pixels in
the disk file.

virtual ROl tile_roi (const Tile *tile) const =0
Retrieve the RO! describing the pixels and channels stored in the tile.

virtual const void *tile_pixels (7ile *tile, TypeDesc &format) const =0
For a tile retrived by get_tile (), return a pointer to the pixel data itself, and also store in format the
data type that the pixels are internally stored in (which may be different than the data type of the pixels in
the disk file). This method should only be called on a tile that has been requested by get_tile () but
has not yet been released with release tile ().

virtual bool add_file (ustring filename, Imagelnput::Creator creator = nullptr, const ImageSpec

*config = nullptr, bool replace = false) =0
The add_file() call causes a file to be opened or added to the cache. There is no reason to use this method

7.2.

ImageCache API 157

OpenimagelO, Release 2.3.9

unless you are supplying a custom creator, or configuration, or both.

If creator is not NULL, it points to an Imagelnput::Creator that will be used rather than the default /m-
agelnput::create(), thus instead of reading from disk, creates and uses a custom /magelnput to generate
the image. The ‘creator’ is a factory that creates the custom /magelnput and will be called like this:

std: :unique_ptr<ImageInput> in (creator());

Once created, the /mageCache owns the Imagelnput and is responsible for destroying it when done. Cus-
tom Imagelnputs allow “procedural” images, among other things. Also, this is the method you use to set
up a “writable” ImageCache images (perhaps with a type of Imagelnput that’s just a stub that does as little
as possible).

If configis not NULL, it points to an /mageSpec with configuration options/hints that will be passed to
the underlying Imagelnput::open() call. Thus, this can be used to ensure that the /mageCache opens a call
with special configuration options.

This call (including any custom creator or configuration hints) will have no effect if there’s already an
image by the same name in the cache. Custom creators or configurations only “work” the FIRST time
a particular filename is referenced in the lifetime of the /mageCache. But if replace is true, any existing
entry will be invalidated, closed and overwritten. So any subsequent access will see the new file. Existing
texture handles will still be valid.

virtual bool add_tile (ustring filename, int subimage, int miplevel, int x, int y, int z, int chbegin, int
chend, TypeDesc format, const void *buffer, stride_t xstride = AutoStride,
stride_t ystride = AutoStride, stride_t zstride = AutoStride, bool copy = true)

Preemptively add a tile co?responding to the named image, at the given subimage, MIP level, and channel
range. The tile added is the one whose corner is (x,y,z), and buffer points to the pixels (in the given
format, with supplied strides) which will be copied and inserted into the cache and made available for
future lookups. If chend < chbegin, it will add a tile containing the full set of channels for the image. Note
that if the ‘copy’ flag is false, the data is assumed to be in some kind of persistent storage and will not be
copied, nor will its pixels take up additional memory in the cache.

Errors and statistics

virtual bool has_error () const =0
Is there a pending error message waiting to be retrieved?

virtual std::string geterror (bool clear = true) const =0
Return the text of all pending error messages issued against this /mageCache, and clear the pending error
message unless clear is false. If no error message is pending, it will return an empty string.

virtual std:string getstats (int level = 1) const =0
Returns a big string containing useful statistics about the /mageCache operations, suitable for saving to a
file or outputting to the terminal. The 1evel indicates the amount of detail in the statistics, with higher
numbers (up to a maximum of 5) yielding more and more esoteric information.

virtual void reset_stats () =0
Reset most statistics to be as they were with a fresh /mageCache. Caveat emptor: this does not flush the
cache itelf, so the resulting statistics from the next set of texture requests will not match the number of tile
reads, etc., that would have resulted from a new ImageCache.

158

Chapter 7. Cached Images

CHAPTER
EIGHT

TEXTURE ACCESS: TEXTURESYSTEM

8.1 Texture System Introduction and Theory of Operation

Coming soon. FIXME

8.2 Helper Classes

8.2.1 Imath

The texture functinality of OpenlmagelO uses the excellent open source Imath types when it requires 3D vectors and
transformation matrixes. Specifically, we use Imath: : V3£ for 3D positions and directions, and Tmath: :M44f for
4x4 transformation matrices. To use these yourself, we recommend that you:

// If using Imath 3.x:
#include <Imath/ImathVec.h>
#include <Imath/ImathMatrix.h>

// OR, 1f using OpenEXR 2.x, before Imath split off:
#include <OpenEXR/ImathVec.h>
#include <OpenEXR/ImathMatrix.h>

Please refer to the Imath documentation and header files for more complete information about use of these types
in your own application. However, note that you are not strictly required to use these classes in your application —
Imath: :V3f has a memory layout identical to f1loat [3] and Imath: :M44f has a memory layout identical to
float[16], so as long as your own internal vectors and matrices have the same memory layout, it’s ok to just cast
pointers to them when passing as arguments to TextureSystem methods.

8.2.2 TextureOpt

TextureOpt is a structure that holds many options controlling single-point texture lookups. Because each texture
lookup API call takes a reference to a TextureOpt, the call signatures remain uncluttered rather than having an ever-
growing list of parameters, most of which will never vary from their defaults. Here is a brief description of the data
members of a TextureOpt structure:

e int firstchannel : The beginning channel for the lookup. For example, to retrieve just the blue channel,
you should have firstchannel =2 while passing nchannels =1 to the appropriate texture function.

e int subimage, ustring subimagename : Specifies the subimage or face within the file to use for the
texture lookup. If subimagename is set (it defaults to the empty string), it will try to use the subimage that
had a matching metadata "oiio:subimagename", otherwise the integer subimage will be used (which

159

OpenimagelO, Release 2.3.9

defaults to 0, i.e., the first/default subimage). Nonzero subimage indices only make sense for a texture file that
supports subimages (like TIFF or multi-part OpenEXR) or separate images per face (such as Ptex). This will be
ignored if the file does not have multiple subimages or separate per-face textures.

* Wrap swrap, twrap : Specify the wrap mode for 2D texture lookups (and 3D volume texture lookups,
using the additional rwrap field). These fields are ignored for shadow and environment lookups. These specify
what happens when texture coordinates are found to be outside the usual [0,1] range over which the texture is
defined. Wrap is an enumerated type that may take on any of the following values:

— WrapBlack : The texture is black outside the [0,1] range.

— WrapClamp : The texture coordinates will be clamped to [0,1], i.e., the value outside [0,1] will be the
same as the color at the nearest point on the border.

— WrapPeriodic : The texture is periodic, i.e., wraps back to 0 after going past 1.

— WrapMirror : The texture presents a mirror image at the edges, i.e., the coordinates go from O to 1, then
back down to O, then back up to 1, etc.

— WrapDefault : Use whatever wrap might be specified in the texture file itself, or some other suitable
default (caveat emptor).

The wrap mode does not need to be identical in the s and t directions.

e float swidth, twidth : For each direction, gives a multiplier for the derivatives. Note that a width of
0 indicates a point sampled lookup (assuming that blur is also zero). The default width is 1, indicating that
the derivatives should guide the amount of blur applied to the texture filtering (not counting any additional blur
specified).

e float sblur, tblur: Foreach direction, specifies an additional amount of pre-blur to apply to the texture
(after derivatives are taken into account), expressed as a portion of the width of the texture. In other words, blur
= 0.1 means that the texture lookup should act as if the texture was pre-blurred with a filter kernel with a width
1/10 the size of the full image. The default blur amount is 0, indicating a sharp texture lookup.

e float fill : Specifies the value that will be used for any color channels that are requested but not found in
the file. For example, if you perform a 4-channel lookup on a 3-channel texture, the last channel will get the
fill value. (Note: this behavior is affected by the "gray_to_rgb" attribute described in the Section about
TextureSystem attributes.

e const float* missingcolor : If not NULL, indicates that a missing or broken texture should not be
treated as an error, but rather will simply return the supplied color as the texture lookup color and texture ()
will return true. If the missingcolor field is left at its default (a NULL pointer), a missing or broken
texture will be treated as an error and texture () will return £alse. Note: When not NULL, the data must
point to nchannels contiguous floats.

* Wrap rwrap, float rblur, rwidth : Specifies wrap, blur, and width for the third component of 3D
volume texture lookups. These are not used for 2D texture or environment lookups.

* MipMode mipmode : Determines if/how MIP-maps are used:

— MipModeDefault : The default high-quality lookup (same as Aniso).

MipModeNoMIP : Just use highest-res image, no MIP mapping

MipModeOneLevel : Use just one mipmap level

MipModeTrilinear : Use two MIPmap levels (trilinear)

MipModeAniso : Use two MIPmap levels w/ anisotropic
* InterpMode interpmode : Determines how we sample within a mipmap level:

— InterpClosest : Force closest texel.

160 Chapter 8. Texture Access: TextureSystem

OpenimagelO, Release 2.3.9

— InterpBilinear : Force bilinear lookup within a mip level.

— InterpBicubic : Force cubic lookup within a mip level.

— InterpSmartBicubic : Bicubic when maxifying, else bilinear (default).
e int anisotropic: Maximum anisotropic ratio (default: 32).

* bool conservative_filter : When true (the default), filters conservatively in a way that chooses to
sometimes over-blur rather than alias.

8.3 TextureSystem API

class OIIO::TextureSystem
Define an API to an abstract class that that manages texture files, caches of open file handles as well as tiles of
texels so that truly huge amounts of texture may be accessed by an application with low memory footprint, and
ways to perform antialiased texture, shadow map, and environment map lookups.

Creating and destroying a texture system

TextureSystem is an abstract API described as a pure virtual class. The actual internal implementation is not
exposed through the external API of OpenlmagelO. Because of this, you cannot construct or destroy the concrete
implementation, so two static methods of 7extureSystem are provided:

static TextureSystem *create (bool shared = true, ImageCache *imagecache = nullptr)
Create a TextureSystem and return a pointer to it. This should only be freed by passing it to TextureSys-
tem::destroy()!

Return A raw pointer to a TextureSystem, which can only be freed with
TextureSystem: :destroy ().

See TextureSystem::destroy
Parameters

* shared: If shared is true, the pointer returned will be a shared TextureSystem, (so that
multiple parts of an application that request a TextureSystem will all end up with the same one,
and the same underlying /mageCache). If shared is false, a completely unique TextureCache
will be created and returned.

* imagecache: If sharedis false and imagecache is not nullptr, the TextureSystem
will use this as its underlying /mageCache. In that case, it is the caller who is responsible for
eventually freeing the ImageCache after the TextureSystem is destroyed. If shared is false
and imagecache is nullptr, then a custom /mageCache will be created, owned by the 7ex-
tureSystem, and automatically freed when the TS destroys.

static void destroy (TextureSystem *ts, bool teardown_imagecache = false)
Destroy an allocated TextureSystem, including freeing all system resources that it holds.

It is safe to destroy even a shared TextureSystem, as the implementation of destroy () will recognize a
shared one and only truly release its resources if it has been requested to be destroyed as many times as
shared TextureSystem’s were created.

Parameters

* ts: Raw pointer to the TextureSystem to destroy.

8.3. TextureSystem API 161

OpenimagelO, Release 2.3.9

* teardown_imagecache: For a shared TextureSystem, if the teardown_imagecache pa-
rameter is true, it will try to truly destroy the shared cache if nobody else is still holding a
reference (otherwise, it will leave it intact). This parameter has no effect if t s was not the single
globally shared TextureSystem.

Setting options and limits for the texture system

These are the list of attributes that can bet set or queried by attribute/getattribute:

All attributes ordinarily recognized by /mageCache are accepted and passed through to the underlying /mage-
Cache. These include:

int max_open_files : Maximum number of file handles held open.
float max_memory_MB : Maximum tile cache size, in MB.

string searchpath : Colon-separated search path for texture files.
string plugin_searchpath : Colon-separated search path for plugins.
int autotile: If >0, tile size to emulate for non-tiled images.

int autoscanline : If nonzero, autotile using full width tiles.

int automip : If nonzero, emulate mipmap on the fly.

int accept_untiled: If nonzero, accept untiled images.

int accept_unmipped : If nonzero, accept unmipped images.

int failure_retries : How many times to retry a read failure.

int deduplicate : If nonzero, detect duplicate textures (default=1).
string substitute_image : If supplied, an image to substatute for all texture references.

int max_errors_per_file : Limits how many errors to issue for each file. (default: 100)

Texture-specific settings:

matrix44 worldtocommon /matrix44 commontoworld : The 4x4 matrices that provide the
spatial transformation from “world” to a “common” coordinate system and back. This is mainly used for
shadow map lookups, in which the shadow map itself encodes the world coordinate system, but positions
passed to shadow () are expressed in “common” coordinates. You do not need to set commontoworld
and worldtocommon separately; just setting either one will implicitly set the other, since each is the
inverse of the other.

int gray_to_rgb : If set to nonzero, texture lookups of single-channel (grayscale) images will repli-
cate the sole channel’s values into the next two channels, making it behave like an RGB image that happens
to have all three channels with identical pixel values. (Channels beyond the third will get the “fill” value.)
The default value of zero means that all missing channels will get the “fill” color.

int max_tile_channels : The maximum number of color channels in a texture file for which all
channels will be loaded as a single cached tile. Files with more than this number of color channels will
have only the requested subset loaded, in order to save cache space (but at the possible wasted expense of
separate tiles that overlap their channel ranges). The default is 5.

int max_mip_res : NEW 2.1 Sets the maximum MIP-map resolution for filtered texture lookups.
The MIP levels used will be clamped to those having fewer than this number of pixels in each dimension.
This can be helpful as a way to limit disk I/O when doing fast preview renders (with the tradeoff that you
may see some texture more blurry than they would ideally be). The defaultis 1 << 30, a value so large
that no such clamping will be performed.

162

Chapter 8. Texture Access: TextureSystem

OpenimagelO, Release 2.3.9

* string latlong_up : The default “up” direction for latlong environment maps (only applies if the
map itself doesn’t specify a format or is in a format that explicitly requires a particular orientation). The
default is "y ". (Currently any other value will result in z being “up.”)

e int flip_ t :If nonzero, t coordinates will be flipped 1-t for all texture lookups. The default is 0.

* string options This catch-all is simply a comma-separated list of name=value settings of named
options, which will be parsed and individually set.

ic->attribute ("options", "max_memory_MB=512.0,autotile=1");

Note that if an option takes a string value that must itself contain a comma, it is permissible to enclose the
value in either single \ ' or double " quotes.

Read-only attributes

Additionally, there are some read-only attributes that can be queried with getattribute () even though they
cannot be set via attribute ():

The following member functions of TextureSystem allow you to set (and in some cases retrieve) options that
control the overall behavior of the texture system:

virtual bool attribute (string_view name, TypeDesc type, const void *val) =0
Set a named attribute (i.e., a property or option) of the TextureSystem.

Example:

TextureSystem =*ts;

int maxfiles = 50;
ts—>attribute ("max_open_files", TypeDesc::INT, &maxfiles);

const char xpath = "/my/path";
ts->attribute ("searchpath", TypeDesc::STRING, &path);

// There are specialized versions for retrieving a single int,
// float, or string without needing types or pointers:
ts—->getattribute ("max_open_files", 50);

ic—>attribute ("max_memory_MB", 4000.0f);

ic—>attribute ("searchpath", "/my/path");

Note: When passing a string, you need to pass a pointer to the char «, not a pointer to the first character.
(Rationale: for an int attribute, you pass the address of the int. So for a string, which is a charx, you
need to pass the address of the string, i.e., a char*x).

Return true if the name and type were recognized and the attribute was set, or false upon failure
(including it being an unrecognized attribute or not of the correct type).

Parameters
* name: Name of the attribute to set.
* type: TypeDesc describing the type of the attribute.
* val: Pointer to the value data.

virtual bool attribute (string_view name, int val) =0
Specialized attribute () for setting a single int value.

virtual bool attribute (string_view name, float val) =0
Specialized attribute () for setting a single f£1oat value.

8.3. TextureSystem API 163

OpenimagelO, Release 2.3.9

virtual bool attribute (string_view name, string_view val) =0
Specialized att ribute () for setting a single string value.

virtual bool getattribute (string_view name, TypeDesc type, void *val) const =0
Get the named attribute of the texture system, store it in xval. All of the attributes that may be set with
the attribute () call may also be queried with getattribute ().

Examples:

TextureSystem =ic;

int maxfiles;
ts->getattribute ("max_open_files", TypeDesc::INT, &maxfiles);

const char xpath;
ts->getattribute ("searchpath", TypeDesc::STRING, é&path);

// There are specialized versions for retrieving a single int,
// float, or string without needing types or pointers:

int maxfiles;

ts->getattribute ("max_open_files", maxfiles);

const char xpath;

ts->getattribute ("searchpath", &path);

Note: When retrieving a string, you need to pass a pointer to the char *, not a pointer to the first character.
Also, the char* will end up pointing to characters owned by the /mageCache; the caller does not need to
ever free the memory that contains the characters.

Return true if the name and type were recognized and the attribute was retrieved, or false upon
failure (including it being an unrecognized attribute or not of the correct type).

Parameters
* name: Name of the attribute to retrieve.
* type: TypeDesc describing the type of the attribute.
e val: Pointer where the attribute value should be stored.

virtual bool getattribute (siring_view name, int &val) const =0
Specialized att ribute () for retrieving a single int value.

virtual bool getattribute (string_view name, float &val) const =0
Specialized attribute () for retrieving a single f£1oat value.

virtual bool getattribute (siring_view name, char **val) const =0
Specialized att ribute () for retrieving a single st ring value as a char*.

virtual bool getattribute (string_view name, std::string &val) const =0
Specialized attribute () for retrieving a single string value as a std: : string.

164 Chapter 8. Texture Access: TextureSystem

OpenimagelO, Release 2.3.9

Opaque data for performance lookups

The TextureSystem implementation needs to maintain certain per-thread state, and some methods take an opaque
Perthread pointer to this record. There are three options for how to deal with it:

a. Don’t worry about it at all: don’t use the methods that want Perthread pointers, or always pass
nullptr for any "Perthread*1 arguments, and /mageCache will do thread-specific-pointer retrieval as
necessary (though at some small cost).

b. If your app already stores per-thread information of its own, you may call
get_perthread_info (nullptr) to retrieve it for that thread, and then pass it into the func-
tions that allow it (thus sparing them the need and expense of retrieving the thread-specific pointer).
However, it is crucial that this pointer not be shared between multiple threads. In this case, the /mageCache
manages the storage, which will automatically be released when the thread terminates.

c. If your app also wants to manage the storage of the Perthread, it can explicitly create one with
create_perthread_info (), pass it around, and eventually be responsible for destroying it with
destroy_perthread_info (). When managing the storage, the app may reuse the Perthread for
another thread after the first is terminated, but still may not use the same Perthread for two threads
running concurrently.

virtual Perthread *get_perthread_info (Perthread *thread_info = nullptr) =0
Retrieve a Perthread, unique to the calling thread. This is a thread-specific pointer that will always return
the Perthread for a thread, which will also be automatically destroyed when the thread terminates.

Applications that want to manage their own Perthread pointers (with create_thread_info and
destroy_thread_info) should still call this, but passing in their managed pointer. If the passed-
in thread_info is not nullptr, it won’t create a new one or retrieve a TSP, but it will do other necessary
housekeeping on the Perthread information.

virtual Perthread *create_thread_info () =0
Create a new Perthread. It is the caller’s responsibility to eventually destroy it using
destroy_thread info().

virtual void destroy_thread_info (Perthread *threadinfo) =0
Destroy a Perthread that was allocated by create _thread_info ().

virtual TextureHandle *get_texture_handle (ustring filename, Perthread *thread_info =
nullptr) =0
Retrieve an opaque handle for fast texture lookups. The opaque pointer thread_info is thread-specific
information returned by get_perthread _info (). Return nullptr if something has gone horribly
wrong.

virtual bool good (TextureHandle *texture_handle) =0
Return true if the texture handle (previously returned by get__image_handle ()) is a valid texture that
can be subsequently read.

virtual ustring £ilename_from handle (TextureHandle *handle) =0
Given a handle, return the filename for that texture.

This method was added in OpenImagelO 2.3.

8.3.

TextureSystem API 165

OpenimagelO, Release 2.3.9

Texture lookups

virtual bool texture (ustring filename, TextureOpt &options, float s, float ¢, float dsdx, float dtdx,

float dsdy, float dtdy, int nchannels, float *result, float *dresultds = nullptr,

float *dresultdt = nullptr) =0
Perform a filtered 2D texture lookup on a position centered at 2D coordinates (s, t) from the texture

identified by £ilename, and using relevant texture opt ions. The nchannels parameter determines
the number of channels to retrieve (e.g., 1 for a single value, 3 for an RGB triple, etc.). The filtered results
will be stored in result [0. .nchannels-1].

We assume that this lookup will be part of an image that has pixel coordinates x and y. By knowing how s
and t change from pixel to pixel in the final image, we can properly filter or antialias the texture lookups.
This information is given via derivatives dsdx and dtdx that define the change in s and t per unit of
%, and dsdy and dtdy that define the change in s and t per unit of y. If it is impossible to know the
derivatives, you may pass O for them, but in that case you will not receive an antialiased texture lookup.

Return true upon success, or false if the file was not found or could not be opened by any available
ImagelO plugin.

Parameters
* filename: The name of the texture.
* options: Fields within options that are honored for 2D texture lookups include the follow-
ing:
— int firstchannel : The index of the first channel to look up from the texture.
— int subimage / ustring subimagename : The subimage or face within the file,

specified by either by name (if non-empty) or index. This will be ignored if the file does not
have multiple subimages or separate per-face textures.

— Wrap swrap, twrap : Specify the wrap mode for each direction, one of: WrapBlack,
WrapClamp, WrapPeriodic, WrapMirror, or WrapDefault.

- float swidth, twidth : For each direction, gives a multiplier for the derivatives.

— float sblur, tblur : For each direction, specifies an additional amount of pre-blur to
apply to the texture (after derivatives are taken into account), expressed as a portion of the
width of the texture.

— float £i1l1: Specifies the value that will be used for any color channels that are requested
but not found in the file. For example, if you perform a 4-channel lookup on a 3-channel texture,
the last channel will get the fill value. (Note: this behavior is affected by the "gray_to_rgb"
TextureSystem attribute.

— const float xmissingcolor : If not nullptr, specifies the color that will be re-
turned for missing or broken textures (rather than being an error).

e s/t: The 2D texture coordinates.

* dsdxdtdxdsdydtdy: The differentials of s and t relative to canonical directions x and y. The
choice of x and y are not important to the implementation; it can be any imposed 2D coordinates,
such as pixels in screen space, adjacent samples in parameter space on a surface, etc. The st
derivatives determine the size and shape of the ellipsoid over which the texture lookup is filtered.

* nchannels: The number of channels of data to retrieve into result (e.g., 1 for a single value,
3 for an RGB triple, etc.).

result[]: The result of the filtered texture lookup will be placed into result[O0..
nchannels-1].

166

Chapter 8. Texture Access: TextureSystem

OpenimagelO, Release 2.3.9

* dresultds/dresultdt: If non-null, these designate storage locations for the derivatives of
result, i.e., the rate of change per unit s and t, respectively, of the filtered texture. If supplied, they
must allow for nchannels of storage.

virtual bool texture (TextureHandle *fexture_handle, Perthread *thread_info, TextureOpt &op-
tions, float s, float ¢, float dsdx, float dtdx, float dsdy, float dtdy, int nchannels,

float *result, float *dresultds = nullptr, float *dresultdt = nullptr) =0
Slightly faster version of rexture() lookup if the app already has a texture handle and per-thread info.

virtual bool texture3d (ustring filename, TextureOpt &options, const Imath::V3f &P, const
Imath::V3f &dPdx, const Imath::V3f &dPdy, const Imath::V3f
&dPdz, int nchannels, float *result, float *dresultds = nullptr, float

*dresultdt = nullptr, float *dresultdr = nullptr) =0
Perform a filtered 3D volumetric texture lookup on a position centered at 3D position P (with given dif-

ferentials) from the texture identified by filename, and using relevant texture opt ions. The filtered
results will be stored in result [0..nchannels-1].

The P coordinate and dPdx, dPdy, and dPdz derivatives are assumed to be in some kind of common
global coordinate system (usually “world” space) and will be automatically transformed into volume local
coordinates, if such a transformation is specified in the volume file itself.

Return true upon success, or false if the file was not found or could not be opened by any available
ImagelO plugin.

Parameters
e filename: The name of the texture.

* options: Fields within options that are honored for 3D texture lookups include the follow-
ing:
— int firstchannel : The index of the first channel to look up from the texture.

— int subimage / ustring subimagename : The subimage or field within the vol-
ume, specified by either by name (if non-empty) or index. This will be ignored if the file does
not have multiple subimages or separate per-face textures.

— Wrap swrap, twrap, rwrap : Specify the wrap mode for each direction, one of:
WrapBlack, WrapClamp, WrapPeriodic, WrapMirror, or WrapDefault.

— float swidth, twidth, rwidth : For each direction, gives a multiplier for the
derivatives.

— float sblur, tblur, rblur : For each direction, specifies an additional amount of
pre-blur to apply to the texture (after derivatives are taken into account), expressed as a portion
of the width of the texture.

— float £il1: Specifies the value that will be used for any color channels that are requested
but not found in the file. For example, if you perform a 4-channel lookup on a 3-channel texture,
the last channel will get the fill value. (Note: this behavior is affected by the "gray_to_rgb"
TextureSystem attribute.

— const float smissingcolor : If not nullptr, specifies the color that will be re-
turned for missing or broken textures (rather than being an error).

— float time : A time value to use if the volume texture specifies a time-varying local trans-
formation (default: 0).

e P: The 2D texture coordinates.

8.3. TextureSystem API 167

OpenimagelO, Release 2.3.9

* dPdx/dPdy/dPdz: The differentials of P. We assume that this lookup will be part of an image
that has pixel coordinates x and y and depth z. By knowing how P changes from pixel to pixel in
the final image, and as we step in z depth, we can properly filter or antialias the texture lookups.
This information is given via derivatives dPdx, dPdy, and dPdz that define the changes in P per
unit of x, v, and z, respectively. If it is impossible to know the derivatives, you may pass 0 for
them, but in that case you will not receive an antialiased texture lookup.

* nchannels: The number of channels of data to retrieve into result (e.g., 1 for a single value,
3 for an RGB triple, etc.).

e result[]: The result of the filtered texture lookup will be placed into result[O..
nchannels-1].

* dresultds/dresultdt/dresultdr: If non-null, these designate storage locations for the
derivatives of result, i.e., the rate of change per unit s, t, and r, respectively, of the filtered texture.
If supplied, they must allow for nchannels of storage.

virtual bool texture3d (TextureHandle *fexture_handle, Perthread *thread_info, TextureOpt &op-
tions, const Imath::V3f &P, const Imath::V3f &dPdx, const
Imath::V3f &dPdy, const Imath::V3f &dPdz, int nchannels, float *re-
sult, float *dresultds = nullptr, float *dresultdt = nullptr, float *dresultdr =

nullptr) =0

Slightly faster version of fexture3d() lookup if the app already has a texture handle and per-thread info.

virtual bool environment (ustring filename, TextureOpt &options, const Imath::V3f &R, const
Imath::V3f &dRdx, const Imath::V3f &dRdy, int nchannels, float *re-

sult, float *dresultds = nullptr, float *dresultdt = nullptr) =0
Perform a filtered directional environment map lookup in the direction of vector R, from the texture

identified by filename, and using relevant texture options. The filtered results will be stored in
result|[].

Return true upon success, or false if the file was not found or could not be opened by any available
ImagelO plugin.

Parameters
e filename: The name of the texture.

* options: Fields within options that are honored for environment lookups include the fol-
lowing:

— int firstchannel : The index of the first channel to look up from the texture.

— int subimage / ustring subimagename : The subimage or face within the file,
specified by either by name (if non-empty) or index. This will be ignored if the file does not
have multiple subimages or separate per-face textures.

- float swidth, twidth : For each direction, gives a multiplier for the derivatives.

float sblur, tblur : For each direction, specifies an additional amount of pre-blur to
apply to the texture (after derivatives are taken into account), expressed as a portion of the
width of the texture.

— float £il1: Specifies the value that will be used for any color channels that are requested
but not found in the file. For example, if you perform a 4-channel lookup on a 3-channel texture,
the last channel will get the fill value. (Note: this behavior is affected by the "gray_to_rgb"
TextureSystem attribute.

— const float smissingcolor : If not nullptr, specifies the color that will be re-
turned for missing or broken textures (rather than being an error).

168

Chapter 8. Texture Access: TextureSystem

OpenimagelO, Release 2.3.9

R: The direction vector to look up.
dRdx/dRdy: The differentials of R with respect to image coordinates x and y.

nchannels: The number of channels of data to retrieve into result (e.g., 1 for a single value,
3 for an RGB triple, etc.).

result[]: The result of the filtered texture lookup will be placed into result[O..
nchannels-1].

dresultds/dresultdt: If non-null, these designate storage locations for the derivatives of
result, i.e., the rate of change per unit s and t, respectively, of the filtered texture. If supplied, they
must allow for nchannels of storage.

virtual bool environment (TextureHandle *fexture_handle, Perthread *thread_info, TextureOpt

&options, const Imath::V3f &R, const Imath::V3f &dRdx, const
Imath::V3f &dRdy, int nchannels, float *result, float *dresultds =
nullptr, float *dresultdt = nullptr) =0

Slightly faster version of environment() if the app already has a texture handle and per-thread info.

Batched texture lookups

virtual bool texture (ustring filename, TextureOptBatch &options, Tex::RunMask mask, const

float *s, const float *f, const float *dsdx, const float *dtdx, const
float *dsdy, const float *dtdy, int nchannels, float *result, float *dresultds
= nullptr, float *dresultdt = nullptr) =0

Perform filtered 2D texture lookups on a batch of positions from the same texture, all at once. The pa-
rameters s, t, dsdx, dtdx, and dsdy, dtdy are each a pointer to [BatchWidth] values. The mask
determines which of those array elements to actually compute.

The float* results act like float [nchannels] [BatchWidth], so that effectively result [0. .
BatchWidth-1] are the “red” result for each lane, result [BatchWidth..2+xBatchWidth-1]
are the “green” results, etc. The dresultds and dresultdt should either both be provided, or else
both be nullptr (meaning no derivative results are required).

Return

true upon success, or false if the file was not found or could not be opened by any available

ImagelO plugin.

Parameters

filename: The name of the texture.

options: A TextureOptBatch containing texture lookup options. This is conceptually the same
as a TextureOpt, but the following fields are arrays of [BatchWidth] elements: sblur, tblur,
swidth, twidth. The other fields are, as with TextureOpt, ordinary scalar values.

mask: A bit-field designating which “lanes” should be computed: if mask & (1<<i) is
nonzero, then results should be computed and stored for result[...][1].

s/t Pointers to the 2D texture coordinates, each as a f1oat [BatchWidth].

dsdx/dtdx/dsdy/dtdy: The differentials of s and t relative to canonical directions x and y,
eachasa float [BatchWidth].

nchannels: The number of channels of data to retrieve into result (e.g., 1 for a single value,
3 for an RGB triple, etc.).

result[]: The result of the filtered texture lookup will be placed here, as float
[nchannels] [BatchWidth]. (Note the “SOA” data layout.)

8.3. TextureSystem API 169

OpenimagelO, Release 2.3.9

* dresultds/dresultdt: If non-null, these designate storage locations for the derivatives of
result, and like result are in SOA layout: float [nchannels] [BatchWidth]

virtual bool texture (TextureHandle *texture_handle, Perthread *thread_info, TextureOptBatch
&options, Tex::RunMask mask, const float *s, const float *#, const float
*dsdx, const float *dtdx, const float *dsdy, const float *drdy, int nchan-

nels, float *result, float *dresultds = nullptr, float *dresultdt = nullptr) =0
Slightly faster version of rexture() lookup if the app already has a texture handle and per-thread info.

virtual bool texture3d (ustring filename, TextureOptBatch &options, Tex::RunMask mask, const
float *P, const float *dPdx, const float *dPdy, const float *dPdz, int
nchannels, float *result, float *dresultds = nullptr, float *dresultdt = nullptr,

float *dresultdr = nullptr) =0
Perform filtered 3D volumetric texture lookups on a batch of positions from the same texture, all at

once. The “point-like” parameters P, dPdx, dPdy, and dPdz are each a pointers to arrays of float
value [3] [BatchWidth] (or alternately like Imath: :Vec3<FloatWide>). That is, each one
points to all the x values for the batch, immediately followed by all the y values, followed by the z values.
The mask determines which of those array elements to actually compute.

The various results arrays are also arranged as arrays that behave as if they were declared float
result [channels] [BatchWidth], where all the batch values for channel O are adjacent, followed
by all the batch values for channel 1, etc.

Return true upon success, or false if the file was not found or could not be opened by any available
ImagelO plugin.

Parameters
e filename: The name of the texture.

* options: A TextureOptBatch containing texture lookup options. This is conceptually the same
as a TextureOpt, but the following fields are arrays of [BatchWidth] elements: sblur, tblur,
swidth, twidth. The other fields are, as with TextureOpt, ordinary scalar values.

* mask: A bit-field designating which “lanes” should be computed: if mask & (1<<i) is
nonzero, then results should be computed and stored for result [...] [1].

¢ P: Pointers to the 3D texture coordinates, each as a f1oat [3] [BatchWidth].

* dPdx/dPdy/dPdz: The differentials of P relative to canonical directions X, y, and z, each as a
float [3] [BatchWidth].

* nchannels: The number of channels of data to retrieve into result (e.g., 1 for a single value,
3 for an RGB triple, etc.).

e result[]: The result of the filtered texture lookup will be placed here, as float
[nchannels] [BatchWidth]. (Note the “SOA” data layout.)

* dresultds/dresultdt/dresultdr: If non-null, these designate storage loca-
tions for the derivatives of result, and like result are in SOA layout: float
[nchannels] [BatchWidth]

virtual bool texture3d (TextureHandle *fexture_handle, Perthread *thread_info, TextureOptBatch
&options, Tex::RunMask mask, const float *P, const float *dPdx,
const float *dPdy, const float *dPdz, int nchannels, float *result, float
*dresultds = nullptr, float *dresultdt = nullptr, float *dresultdr = nullptr) =

0
Slightly faster version of rexture3d() lookup if the app already has a texture handle and per-thread info.

170 Chapter 8. Texture Access: TextureSystem

OpenimagelO, Release 2.3.9

virtual bool environment (ustring filename, TextureOptBatch &options, Tex::RunMask mask,
const float *R, const float *dRdx, const float *dRdy, int nchan-
nels, float *result, float *dresultds = nullptr, float *dresultdt = nullptr)

Perform filtered directional en%ironment map lookups on a batch of directions from the same texture,
all at once. The “point-like” parameters R, dRdx, and dRdy are each a pointers to arrays of float
value[3] [BatchWidth] (or alternately like Tmath: :Vec3<FloatWide>). That is, each one
points to all the x values for the batch, immediately followed by all the y values, followed by the z values.
The mask determines which of those array elements to actually compute.

The various results arrays are also arranged as arrays that behave as if they were declared float
result [channels] [BatchWidth], where all the batch values for channel O are adjacent, followed
by all the batch values for channel 1, etc.

Return true upon success, or false if the file was not found or could not be opened by any available
ImagelO plugin.

Parameters
e filename: The name of the texture.

* options: A TextureOptBatch containing texture lookup options. This is conceptually the same
as a TextureOpt, but the following fields are arrays of [BatchWidth] elements: sblur, tblur,
swidth, twidth. The other fields are, as with TextureOpt, ordinary scalar values.

* mask: A bit-field designating which “lanes” should be computed: if mask & (1<<i) is
nonzero, then results should be computed and stored for result[...][1].

¢ R: Pointers to the 3D texture coordinates, each as a f1loat [3] [BatchWidth].

* dRdx/dRdy: The differentials of R relative to canonical directions x and y, each as a
float [3] [BatchWidth].

* nchannels: The number of channels of data to retrieve into result (e.g., 1 for a single value,
3 for an RGB triple, etc.).

e result[]: The result of the filtered texture lookup will be placed here, as float
[nchannels] [BatchWidth]. (Note the “SOA” data layout.)

* dresultds/dresultdt: If non-null, these designate storage locations for the derivatives of
result, and like result are in SOA layout: float [nchannels] [BatchWidth]

virtual bool environment (TextureHandle *fexture_handle, Perthread *thread_info, TextureOpt-
Batch &options, Tex::RunMask mask, const float *R, const float
*dRdx, const float *dRdy, int nchannels, float *result, float *dresultds

= nullptr, float *dresultdt = nullptr) =0
Slightly faster version of environment() if the app already has a texture handle and per-thread info.

Texture metadata and raw texels

virtual std:string resolve_filename (const std::string &filename) const =0
Given possibly-relative ‘filename’, resolve it using the search path rules and return the full resolved file-
name.

virtual bool get_texture_info (ustring filename, int subimage, ustring dataname, TypeDesc

datatype, void *data) =0
Get information or metadata about the named texture and store it in *data.

Data names may include any of the following:

8.3. TextureSystem API 171

OpenimagelO, Release 2.3.9

exists (int): Stores the value 1 if the file exists and is an image format that OpenlmagelO can read,
or 0 if the file does not exist, or could not be properly read as a texture. Note that unlike all other
queries, this query will “succeed” (return t rue) even if the file does not exist.

udim (int) : Stores the value 1 if the file is a “virtual UDIM” or texture atlas file (as described in
Section :ref:sec-texturesys—udim) or 0 otherwise.

subimages (int) : The number of subimages/faces in the file, as an integer.

resolution (int[2] or int[3]): The resolution of the texture file, if an array of 2 integers (described
as TypeDesc (INT, 2)), or the 3D resolution of the texture file, which is an array of 3 integers
(described as TypeDesc (INT, 3)) The third value will be 1 unless it’s a volumetric (3D) image.

miplevels (int) : The number of MIPmap levels for the specified subimage (an integer).

texturetype (string) : A string describing the type of texture of the given file, which describes how
the texture may be used (also which texture API call is probably the right one for it). This currently
may return one of: “unknown”, “Plain Texture”, “Volume Texture”, “Shadow”, or “Environment”.

textureformat (string) : A string describing the format of the given file, which describes the kind
of texture stored in the file. This currently may return one of: “unknown”, “Plain Texture”, “Volume
Texture”, “Shadow”, “CubeFace Shadow”, “Volume

Shadow”, “LatLong Environment”, or “CubeFace Environment”. Note that there are several kinds of
shadows and environment maps, all accessible through the same API calls.

channels (int) : The number of color channels in the file.

format (int) : The native data format of the pixels in the file (an integer, giving the
TypeDesc: : BASETYPE of the data). Note that this is not necessarily the same as the data for-
mat stored in the image cache.

cachedformat (int) : The native data format of the pixels as stored in the image cache (an integer,
giving the TypeDesc: : BASETYPE of the data). Note that this is not necessarily the same as the
native data format of the file.

datawindow (int[4] or int[6]): Returns the pixel data window of the image, which is either an array
of 4 integers (returning xmin, ymin, Xmax, ymax) or an array of 6 integers (returning xmin, ymin,
zmin, Xmax, ymax, zmax). The z values may be useful for 3D/volumetric images; for 2D images they
will be 0).

displaywindow (matrix) : Returns the display (a.k.a. full) window of the image, which is either
an array of 4 integers (returning xmin, ymin, Xmax, ymax) or an array of 6 integers (returning xmin,
ymin, zmin, Xxmax, ymax, zmax). The z values may be useful for 3D/volumetric images; for 2D
images they will be 0).

worldtocamera (matrix) : The viewing matrix, which is a 4x4 matrix (an Imath: :M44f, de-
scribed as TypeMatrix44) giving the world-to-camera 3D transformation matrix that was used
when the image was created. Generally, only rendered images will have this.

worldtoscreen (matrix) : The projection matrix, which is a 4x4 matrix (an Imath: :M44f,
described as TypeMatrix44) giving the matrix that projected points from world space into a 2D
screen coordinate system where x and y range from -1 to +1. Generally, only rendered images will
have this.

worldtoNDC (matrix) : The projection matrix, which is a 4x4 matrix (an Imath: :M44 £, described
as TypeMatrix44) giving the matrix that projected points from world space into a 2D screen coor-
dinate system where x and y range from O to +1. Generally, only rendered images will have this.

172

Chapter 8. Texture Access: TextureSystem

OpenimagelO, Release 2.3.9

* averagecolor (float[nchannels]) : If available in the metadata (generally only for files that have
been processed by maket x), this will return the average color of the texture (into an array of floats).

* averagealpha (float) : If available in the metadata (generally only for files that have been pro-
cessed by maketx), this will return the average alpha value of the texture (into a float).

e constantcolor (float[nchannels]) : If the metadata (generally only for files that have been pro-
cessed by maketx) indicates that the texture has the same values for all pixels in the texture, this will
retrieve the constant color of the texture (into an array of floats). A non-constant image (or one that
does not have the special metadata tag identifying it as a constant texture) will fail this query (return
false).

e constantalpha (float) : If the metadata indicates that the texture has the same values for all pixels
in the texture, this will retrieve the constant alpha value of the texture. A non-constant image (or one
that does not have the special metadata tag identifying it as a constant texture) will fail this query
(return false).

e stat:tilesread (int64) : Number of tiles read from this file.
* stat:bytesread (int64) : Number of bytes of uncompressed pixel data read

e stat:redundant_tiles (int64) : Number of times a tile was read, where the same tile had been
rad before.

e stat:redundant_bytesread (int64) : Number of bytes (of uncompressed pixel data) in tiles
that were read redundantly.

e stat:redundant_bytesread (int) : Number of tiles read from this file.
* stat:timesopened (int) : Number of times this file was opened.
* stat:iotime (float) : Time (in seconds) spent on all I/O for this file.

* stat:mipsused (int) : Stores 1 if any MIP levels beyond the highest resolution were accessed,
otherwise 0.

* stat:is_duplicate (int) : Stores I if this file was a duplicate of another image, otherwise 0.

* Anything else : For all other data names, the the metadata of the image file will be searched for an
item that matches both the name and data type.

Return true if get_textureinfo () is able to find the requested dataname for the texture and it
matched the requested datatype. If the requested data was not found or was not of the right data
type, return false. Except for the "exists" query, a file that does not exist or could not be read
properly as an image also constitutes a query failure that will return false.

Parameters
e filename: The name of the texture.

* subimage: The subimage to query. (The metadata retrieved is for the highest-resolution MIP
level of that subimage.)

¢ dataname: The name of the metadata to retrieve.
* datatype: TypeDesc describing the data type.

* data: Pointer to the caller-owned memory where the values should be stored. It is the caller’s
responsibility to ensure that data points to a large enough storage area to accommodate the
datatype requested.

8.3. TextureSystem API 173

OpenimagelO, Release 2.3.9

virtual bool get_texture_info (TextureHandle *texture_handle, Perthread *thread_info, int
subimage, ustring dataname, TypeDesc datatype, void *data)

A more efficient variety of ge t_te;t ure_info () for cases where you can use a TextureHandlex
to specify the image and optionally have a Perthreadx for the calling thread.

virtual bool get_imagespec (ustring filename, int subimage, ImageSpec &spec) =0
Copy the ImageSpec associated with the named texture (the first subimage by default, or as set by
subimage).

Return true upon success, false upon failure failure (such as being unable to find, open, or read the
file, or if it does not contain the designated subimage or MIP level).

Parameters
e filename: The name of the image.

* subimage: The subimage to query. (The spec retrieved is for the highest-resolution MIP level
of that subimage.)

* spec: ImageSpec into which will be copied the spec for the requested image.

virtual bool get_imagespec (TextureHandle *texture_handle, Perthread *thread_info, int subim-
age, ImageSpec &spec) =0
A more efficient variety of get__imagespec () for cases where you can use a TextureHandlex* to
specify the image and optionally have a Perthreadx for the calling thread.

virtual const /mageSpec *imagespec (ustring filename, int subimage =0) =0
Return a pointer to an /mageSpec associated with the named texture if the file is found and is an image
format that can be read, otherwise return nullptr.

This method is much more efficient than get_imagespec (), since it just returns a pointer to the
spec held internally by the TextureSystem (rather than copying the spec to the user’s memory). How-
ever, the caller must beware that the pointer is only valid as long as nobody (even other threads) calls
invalidate () onthefile, or invalidate_all (), or destroys the TextureSystem and its underlying
ImageCache.

Return A pointer to the spec, if the image is found and able to be opened and read by an available image
format plugin, and the designated subimage exists.

Parameters
e filename: The name of the image.

* subimage: The subimage to query. (The spec retrieved is for the highest-resolution MIP level
of that subimage.)

virtual const /mageSpec *imagespec (TextureHandle *texture_handle, Perthread *thread_info =
nullptr, int subimage =0) =0
A more efficient variety of imagespec () for cases where you can use a TextureHandlex to specify
the image and optionally have a Perthreadx for the calling thread.

virtual bool get_texels (ustring filename, TextureOpt &options, int miplevel, int xbegin, int xend,
int ybegin, int yend, int zbegin, int zend, int chbegin, int chend, TypeDesc
format, void *result) =0
For a texture specified by name, retrieve the rectangle of raw unfiltered texels from the subimage specified
in options and at the designated miplevel, storing the pixel values beginning at the address specified
by result. The pixel values will be converted to the data type specified by format. The rectangular

174 Chapter 8. Texture Access: TextureSystem

OpenimagelO, Release 2.3.9

region to be retrieved includes begin but does not include end (much like STL begin/end usage). Re-
quested pixels that are not part of the valid pixel data region of the image file will be filled with zero values.
Channels requested but not present in the file will get the options.f£i11 value.

Return true for success, false for failure.
Parameters
* filename: The name of the image.

* options: A TextureOpt describing access options, including wrap modes, fill value, and subim-
age, that will be used when retrieving pixels.

* miplevel: The MIP level to retrieve pixels from (0 is the highest resolution level).

* xbegin/xend/ybegin/yend/zbegin/zend: The range of pixels to retrieve. The pixels
retrieved include the begin value but not the end value (much like STL begin/end usage).

* chbegin/chend: Channel range to retrieve. To retrieve all channels, use chbegin = 0,
chend = nchannels.

* format: TypeDesc describing the data type of the values you want to retrieve into result. The
pixel values will be converted to this type regardless of how they were stored in the file or in the
cache.

* result: Pointer to the memory where the pixel values should be stored. It is up to the caller
to ensure that result points to an area of memory big enough to accommodate the requested
rectangle (taking into consideration its dimensions, number of channels, and data format).

virtual bool get_texels (TextureHandle *fexture_handle, Perthread *thread_info, TextureOpt
&options, int miplevel, int xbegin, int xend, int ybegin, int yend, int zbe-
gin, int zend, int chbegin, int chend, TypeDesc format, void *result) =

A more efficient variety of get_texels () for cases where you can use a Text ureHandlex to specify
the image and optionally have a Perthreadx for the calling thread.

Methods for UDIM patterns

virtual bool is_udim (ustring filename) =0
Is the filename a UDIM pattern?
This method was added in OpenlmagelO 2.3.

virtual bool is_udim (TextureHandle *udimfile) =0
Does the handle refer to a file that’s a UDIM pattern?

This method was added in OpenlmagelO 2.3.

virtual TextureHandle *resolve_udim (ustring udimpattern, float s, float t) =0
For a UDIM filename pattern and texture coordinates, return the TextureHandle pointer for the concrete
tile file it refers to, or nullptr if there is no corresponding tile (udim sets are allowed to be sparse).

This method was added in OpenImagelO 2.3.

virtual TextureHandle *resolve_udim (TextureHandle *udimfile, Perthread *thread_info, float s,

float7) =0
A more efficient variety of resolve udim () for cases where you have the TextureHandlex that

corresponds to the “virtual” UDIM file and optionally have a Perthread~ for the calling thread.

This method was added in OpenlmagelO 2.3.

8.3. TextureSystem API 175

OpenimagelO, Release 2.3.9

virtual void inventory_udim (ustring udimpattern, std::vector<ustring> &filenames, int &nutiles,

int &mvtiles) =0
Produce a full inventory of the set of concrete files comprising the UDIM set specified by udimpattern.

The apparent number of texture atlas tiles in the u and v directions will be written to nutiles and
nvtiles, respectively. The vector filenames will be sized to ntiles % nvtiles and filled with
the the names of the concrete files comprising the atlas, with an empty ustring corresponding to any
unpopulated tiles (the UDIM set is allowed to be sparse). The filename list is indexed as utile +
vtile » nvtiles.

This method was added in OpenImagelO 2.3.

virtual void inventory_ udim (TextureHandle *udimfile, Perthread *thread_info,
std::vector<ustring> &filenames, int &nutiles, int &mvtiles) =

A more efficient variety of inventory udim () for cases where you have the TextureHandle* that
corresponds to the “virtual” UDIM file and optionally have a Perthreadx for the calling thread.

This method was added in OpenlmagelO 2.3.

Controlling the cache

virtual void invalidate (ustring filename, bool force = true) =0
Invalidate any cached information about the named file, including loaded texture tiles
from that texture, and close any open file handle associated with the file. This calls
ImageCache: :invalidate (filename, force) on the underlying /mageCache.

virtual void invalidate_all (bool force = false) =0
Invalidate all cached data for all textures. This calls ImageCache: :invalidate_all (force) on
the underlying ImageCache.

virtual void close (ustring filename) =0
Close any open file handles associated with a named file, but do not invalidate any image spec information
or pixels associated with the files. A client might do this in order to release OS file handle resources, or to
make it safe for other processes to modify textures on disk. This calls ImageCache: :close (force)
on the underlying /mageCache.

virtual void close_all () =0
close () all files known to the cache.

Errors and statistics

virtual bool has_error () const =0
Is there a pending error message waiting to be retrieved?

virtual std::string geterror (bool clear = true) const =0
Return the text of all pending error messages issued against this TextureSystem, and clear the pending error
message unless clear is false. If no error message is pending, it will return an empty string.

virtual std::string getstats (int level = 1, bool icstats = true) const =0
Returns a big string containing useful statistics about the 7extureSystem operations, suitable for saving
to a file or outputting to the terminal. The 1level indicates the amount of detail in the statistics, with
higher numbers (up to a maximum of 5) yielding more and more esoteric information. If icstats is
true, the returned string will also contain all the statistics of the underlying /mageCache, but if false will
only contain texture-specific statistics.

virtual void reset_stats () =0
Reset most statistics to be as they were with a fresh TextureSystem. Caveat emptor: this does not flush the

176

Chapter 8. Texture Access: TextureSystem

OpenimagelO, Release 2.3.9

cache itself, so the resulting statistics from the next set of texture requests will not match the number of
tile reads, etc., that would have resulted from a new TextureSystem.

Public Functions

virtual /mageCache *imagecache () const =0
Return an opaque, non-owning pointer to the underlying /mageCache (if there is one).

8.4 UDIM texture atlases

8.4.1 Texture lookups

The texture () call supports virtual filenames that expand per lookup for UDIM tiled texture atlases. The substitu-
tions will occur if the texture filename initially passed to texture () does not exist as a concrete file and contains
one or more of the following substrings:

<UDIM> 1001 + utile + vtile*10
<u> utile

<v> vtile

<U> utile + 1

<> vtile + 1

_u##vH# utile, vtile

% (UDIM)d | 1001 + utile + vtile*10

where the tile numbers are derived from the input u,v texture coordinates as follows:

// Each unit square of texture is a different tile

utile = max (0, int(u));

vtile = max (0, int(v));

// Re-adjust the texture coordinates to the offsets within the tile
u = u — utile;

v = v - vtile;

Example:

ustring filename ("paint.<UDIM>.tif");
float s = 1.4, t = 3.8;
texsys—->texture (filename, s, t, ...);

will retrieve from file paint .1032.tif at coordinates (0.4,0.8).

8.4.2 Handles of udim files

Calls to get_texture_handle (), when passing a UDIM pattern filename, will always succeed. But withing
knowing a specific u and v, it has no way to know that the concrete file you will eventually ask for would not succeed,
so this handle is for the overall “virtual” texture atlas.

You can retrieve the handle of a specific “tile” of the UDIM set by using

TextureHandle *resolve_udim (ustring udimpattern, float s, float t)

TextureHandle *resolve_udim (TextureHandle *udimfile, Perthread *thread_info, float s, float)
Note: these will return nullptr if the UDIM tile for those coordinates is unpopulated.

8.4. UDIM texture atlases 177

OpenimagelO, Release 2.3.9

Note also that the is_udim () method can be used to ask whether a filename or handle corresponds to a UDIM
pattern (the whole set of atlas tiles):
bool is_udim (ustring filename)

bool is_udim (TextureHandle *udimfile)

8.4.3 Retrieving metadata from UDIM sets and tiles

Calls to get_texture_info () on UDIM file pattern will succeed if the metadata is found and has the same value
in all of the populated “tiles” of a UDIM. If not all populated tile files have the same value for that attribute, the call
will fail.

If you want to know the metadata at a specific texture coordinate, you can use a combination of resolve_udim ()
to find the handle for the corresponding concrete texture file for that “tile,” and then get_texture_info () to
retrieve the metadata for the concrete file.

8.4.4 Full inventory of a UDIM set

You can get the range in u and v of the UDIM texture atlas, and the list of all of the concrete filenames of the
corresponding tiles with this method:

void inventory_udim (ustring udimpattern, std::vector<ustring> &filenames, int &nutiles, int &nvtiles)
void inventory_udim (TextureHandle *udimfile, Perthread *thread_info, std::vector<ustring> &filenames,
int &nutiles, int &nvtiles)

The indexing scheme is that filenames [u + v * nvtiles] isthe name of the tile with integer indices (u, v),
where 0 is the first index of each row or column.

The combination of inventory_udim() and get_texture_handle () of the listed filenames can be used to
generate the corresponding handles for each UDIM tile.

8.5 Batched Texture Lookups

On CPU architectures with SIMD processing, texturing entire batches of samples at once may provide a large speedup
compared to texturing each sample point individually. The batch size is fixed (for any build of OpenlmagelO) and
may be accessed with the following constant:

static constexprint 0OII10: : Tex: :BatchWidth = OIIO_TEXTURE_SIMD_BATCH_WIDTH
The SIMD width for batched texturing operations. This is fixed within any release of OpenlmagelO, but may
change from release to release and also may be overridden at build time. A typical batch size is 16.

typedef simd::VecType<float, OIO_TEXTURE_SIMD_BATCH_WIDTH>::type OII0: : Tex: :FloatWide
A type alias for a SIMD vector of floats with the batch width.

typedef simd::VecType<int, OIIO_TEXTURE_SIMD_BATCH_WIDTH>::type OIIO: : Tex: : IntWide
A type alias for a SIMD vector of ints with the batch width.

All of the batched calls take a run mask, which describes which subset of “lanes” should be computed by the batched
lookup:

typedef uint64_t OITO0: :Tex: :RunMask
RunMask is defined to be an integer large enough to hold at least Bat chWidth bits. The least significant bit
corresponds to the first (i.e., [0]) position of all batch arrays. For each position i in the batch, the bit identified
by (1 << 1) controls whether that position will be computed.

178 Chapter 8. Texture Access: TextureSystem

OpenimagelO, Release 2.3.9

enumerator RunMaskOn
The defined constant RunMaskOn contains the value with all bits 0. .BatchWidth-1 setto 1.

8.5.1 Batched Options

TextureOptBatch is a structure that holds the options for doing an entire batch of lookups from the same texture at
once. The members of TextureOptBatch correspond to the similarly named members of the single-point TextureOpt,
so we refer you to Section TextureOpt for detailed explanations, and this section will only explain the differences

between batched and single-point options. Members include:
e int firstchannel:
* int subimage, ustring subimagename:
* Wrap swrap, twrap, rwrap:
e float fill:
e const float* missingcolor:
e MipMode mipmode :
* InterpMode interpmode:
e int anisotropic:
* bool conservative_filter:

These fields are all scalars — a single value for each TextureOptBatch — which means that the value
of these options must be the same for every texture sample point within a batch. If you have a number
of texture lookups to perform for the same texture, but they have (for example) differing wrap modes
or subimages from point to point, then you must split them into separate batch calls.

e float sblur[Tex::BatchWidth] :
e float tblur[Tex::BatchWidth] :
e float rblur[Tex::BatchWidth] :

These arrays hold the s, and t blur amounts, for each sample in the batch, respectively. (And the r
blur amount, used only for volumetric texture3d () lookups.)

e float swidth[Tex::BatchWidth] :
e float twidth[Tex::BatchWidth] :
e float rwidth[Tex::BatchWidth] :

These arrays hold the s, and t filtering width multiplier for derivatives, for each sample in the batch,
respectively. (And the r multiplier, used only for volumetric texture3d () lookups.)

8.5.2 Batched Texture Lookup Calls

bool TextureSystem: : texture (ustring filename, TextureOptBatch &options, Tex::RunMask mask,
const float *s, const float *t, const float *dsdx, const float *dtdx,
const float *dsdy, const float *dtdy, int nchannels, float *result, float
*dresultds = nullptr, float *dresultdt = nullptr)

8.5. Batched Texture Lookups

179

OpenimagelO, Release 2.3.9

bool TextureSystem: : texture (TextureHandle *texture_handle, Perthread *thread_info, TextureOpt-

Batch &options, Tex::RunMask mask, const float *s, const float *z,
const float *dsdx, const float *dtdx, const float *dsdy, const
float *dtdy, int nchannels, float *result, float *dresultds = nullptr, float

*dresultdt = nullptr)
Perform filtered 2D texture lookups on a batch of positions from the same texture, all at once. The parameters s,

t, dsdx, dtdx, and dsdy, dtdy are each a pointer to [BatchWidth] values. The mask determines which
of those array elements to actually compute.

The various results are arranged as arrays that behave as if they were declared:

float result[channels] [BatchWidth]

In other words, all the batch values for channel 0 are adjacent, followed by all the batch values for channel 1,
etc. (This is “SOA” order.)

This function returns t rue upon success, or false if the file was not found or could not be opened by any
available ImagelO plugin.

bool texture3d (ustring filename, TextureOptBatch &options, Tex::RunMask mask, const float *P, const

float *dPdx, const float *dPdy, const float *dPdz, int nchannels, float *result, float
*dresultds = nullptr, float *dresultdt = nullptr, float *dresultdr = nullptr)

bool texture3d (TextureHandle *texture_handle, Perthread *thread_info, TextureOptBatch &options,

Tex::RunMask mask, const float *P, const float *dPdx, const float *dPdy, const
float *dPdz, int nchannels, float *result, float *dresultds = nullptr, float *dresultdt = nullptr,

float *dresultdr = nullptr)
Perform filtered 3D volumetric texture lookups on a batch of positions from the same texture, all at

once. The “point-like” parameters P, dPdx, dPdy, and dPdz are each a pointers to arrays of float
value [3] [BatchWidth]. That is, each one points to all the x values for the batch, immediately followed
by all the y values, followed by the z values.

The various results arrays are also arranged as arrays that behave as if they were declared float
result [channels] [BatchWidth], where all the batch values for channel O are adjacent, followed by
all the batch values for channel 1, etc.

This function returns t rue upon success, or false if the file was not found or could not be opened by any
available ImagelO plugin.

bool environment (ustring filename, TextureOptBatch &options, Tex::RunMask mask, const float *R,

const float *dRdx, const float *dRdy, int nchannels, float *result, float *dresultds
= nullptr, float *dresultdt = nullptr)

bool environment (TextureHandle *texture_handle, Perthread *thread_info, TextureOptBatch &options,

Tex::RunMask mask, const float *R, const float *dRdx, const float *dRdy, int

nchannels, float *result, float *dresultds = nullptr, float *dresultdt = nullptr)
Perform filtered directional environment map lookups on a batch of positions from the same texture, all

at once. The “point-like” parameters R, dRdx, and dRdy are each a pointers to arrays of float
value [3] [BatchWidth]. That is, each one points to all the x values for the batch, immediately followed
by all the y values, followed by the z values.

Perform filtered directional environment map lookups on a collection of directions all at once, which may be
much more efficient than repeatedly calling the single-point version of environment (). The parameters R,
dRdx, and dRdy are now VaryingRef’s that may refer to either a single or an array of values, as are many the
fields in the options.

The various results arrays are also arranged as arrays that behave as if they were declared float
result [channels] [BatchWidth], where all the batch values for channel 0 are adjacent, followed by
all the batch values for channel 1, etc.

180

Chapter 8. Texture Access: TextureSystem

OpenimagelO, Release 2.3.9

This function returns t rue upon success, or false if the file was not found or could not be opened by any
available ImagelO plugin.

8.5. Batched Texture Lookups 181

OpenimagelO, Release 2.3.9

182 Chapter 8. Texture Access: TextureSystem

CHAPTER
NINE

IMAGEBUF: IMAGE BUFFERS

9.1 ImageBuf Introduction and Theory of Operation

ImageBuf is a utility class that stores an entire image. It provides a nice API for reading, writing, and manipulating
images as a single unit, without needing to worry about any of the details of storage or I/O.

All I/O involving ImageBuf (that is, calls to read or write) are implemented underneath in terms of ImageCache,
Imagelnput, and ImageOutput, and so support all of the image file formats supported by OIIO.

The ImageBuf class definition requires that you:

#include <OpenImageIO/imagebuf.h>

enum OIIO::ImageBuf::IBStorage
An ImageBuf can store its pixels in one of several ways (each identified by an IBSt orage enumerated value):

Values:

enumerator UNINITIALIZED
An ImageBuf that doesn’t represent any image at all (either because it is newly constructed with the default
constructor, or had an error during construction).

enumerator LOCALBUFFER
“Local storage” is allocated to hold the image pixels internal to the ImageBuf. This memory will be freed
when the ImageBuf is destroyed.

enumerator APPBUFFER
The ImageBuf “wraps” pixel memory already allocated and owned by the calling application. The caller
will continue to own that memory and be responsible for freeing it after the ImageBuf is destroyed.

enumerator IMAGECACHE
The ImageBuf is “backed” by an /mageCache, which will automatically be used to retrieve pixels when
requested, but the ImageBuf will not allocate separate storage for it. This brings all the advantages of the
ImageCache, but can only be used for read-only ImageBuf’s that reference a stored image file.

183

OpenimagelO, Release 2.3.9

9.2 Constructing, destructing, resetting an ImageBuf

There are several ways to construct an ImageBuf. Each constructor has a corresponding reset method that takes the
same arguments. Calling reset on an existing ImageBuf is equivalent to constructing a new ImageBuf from scratch
(even if the ImageBuf, prior to reset, previously held an image).

9.2.1 Making an empty or uninitialized ImageBuf

OIIO: :ImageBuf: :ImageBuf ()
Default constructor makes an empty/uninitialized ImageBuf. There isn’t much you can do with an
uninitialized buffer until you call reset (). The storage type of a default-constructed ImageBuf is
IBStorage: :UNINITIALIZED.

inline void OIIO: :ImageBuf: : reset ()
Destroy any previous contents of the ImageBuf and re-initialize it to resemble a freshly constructed ImageBuf
using the default constructor (holding no image, with stor